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1 Measure Theory Part I

We shall introduce a probability space (Ω,F , P ). Let Ω ̸= ∅, called theLecture 1
(1/21/14) sample space or possible outcomes of an experiment. E.g. 2 coins tosses

Ω = {0, 1}2 = {(0, 0), (0, 1), (1, 0), (1, 1)}

This is a finite set. For Ω infinite, it was not so clear how to make sense
of it, in particular it got to be additive and normalizable. This was
the struggle for the early development of the probability theory. It was
Kolmogorov who formally used the measure theory to make the subject
rigorous.

1.1 σ Field and Measure

Definition 1. A collection F of subsets and Ω is a σ field (or σ algebra)
if

1) ∅ ∈ F

2) A ∈ F =⇒ Ac ∈ F

3) A1, A2... ∈ F =⇒
∪

n≥1An ∈ F

(Ω,F) is called a measurable space. An A ∈ F is called an event. For
now assume F is all subsets of Ω, but soon we need to restrict it to make
it measurable.

Definition 2. A function P : F → [0, 1] is a probability measure if

1) P (∅) = 0

2) P (Ω) = 1

3) A1, A2... pairwise disjoint P (∪n≥1An) =
∑

n≥1 P (An)

Since typically P (a point) = 0, P of countable union of points is 0.
If we had make definition 1 3) to include uncountable union like for a
topology, then we would have

P (everything) = 0

for everything is made of points. Bad
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Remark 3. Let A,B ∈ F

1) P (Ac) = 1− P (A)

2) P (A ∪B) = P (A) + P (B)− P (A ∩B)

3) A ⊂ B =⇒ P (A) ≤ P (B)

4) A1, A2, ... ∈ F =⇒ P (∪n≥1An) ≤
∑

n≥1 P (An) (σ−subadditivity)

Example 4. 1) F = {∅,Ω} is a σ field, “the trivial σ field”

2) F = P(Ω) power set. If Ω is discrete. F is σ. If Ω is not discrete, bad
thing can happen.

1.2 Borel Sets, Measurable functions

This is recurring scheme. In topology, one studies open sets, (but no
compliment for compliment of open is not usually open.) And one stud-
ies the continuous function, because contentious functions are compati-
ble with the structure, i.e. per-image of continuous function of open set
is open. Here the compatible function is measurable function, because
we will show the per-image of event of measurable function is an event.

Exercise 5. Let C ∈ P(Ω) be any collection of subset of Ω, then there
exists a minimal σ field containing C, denote σ(C) and called the σ field
generated by C.

Definition 6. Let (S, d) be a metric space and letO = {all open sets in S}
then B(S) := σ(O) is called the Borel σ field of (S, d). The element of
B(S) are called Borel set or Borel measurable set.

One can show the number of Borel set of the real is equal the cardinality
of real, so they are continuous.

Example 7. For S = R interval

(a, b) [a, b) (a, b] [a, b]

are Borel. Any of these types generates B(R).

Definition 8. Let (Ω,F) and (E, E) be measurable space, a function
X : Ω→ E is called F/E measurable or just measurable (mbl) if

X−1(B) ∈ F for all B ∈ E
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or short hand
X−1(E) ⊂ F

In the definition X−1(B) means {w ∈ Ω : X(w) ∈ B} or short hand
{X ∈ B}.

If E is metric, we take E = B(E) by default. i.e. X : Ω → R is mbl,
then it’s F/B(R) mbl.

How to check a function is mbl?

Theorem 9. (Measurability Lemma) Let X : (Ω,F) → (E, E) be a
function. Assume E = σ(C) for some C ∈ P(E). If

X−1(C) ⊂ F =⇒ X−1(E) ⊂ F

i.e. X is mbl.

Proof. ConsiderD = {A ⊂ E : X−1(A) ∈ F} is a σ field. By assumption
C ⊂ D then by minimality E ⊂ D, so X−1(E) ⊂ F .

Example 10. 1) Let X : Ω → R. C = {(−∞, a] : a ∈ R} generates
B(R), it suffices to check that X−1((−∞, a]) ∈ F ∀ a ∈ R.

2) Let Ω be metric space Ω = B(S) any continuous function, then X :
Ω→ R is measurable.

Examples of ProbabilityLecture 2
(1/23/14) 1) n coin tosses

Ω = {1, 0}n

w ∈ Ω is of the form w = {w1, ..., wn}, each wk is the outcome of one
coin toss. F = P(Ω). Fair coin

P (A) =
|A|
|Ω|

= 2−n|A|

2) general discrete case

Ω finite or countably infinite set, F = P(Ω). Let

(Pw)w∈Ω ⊂ [0, 1]

satisfies
∑

w∈Ω Pw = 1 and put P (A) =
∑

w∈A Pw. This defines a general
form of a probability on Ω.
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3) Ω ̸= ∅ any set. F = P(Ω), P = δx Dirac measure of x ∈ Ω

δx =

{
1 x ∈ A
0 x /∈ A

4) Lebesgue measure

By the following theorem which we will prove later.

Theorem 11. There exists a unique measure λ on (R, B(R)) such that

λ((a, b]) = b− a

for all a < b.

We let Ω = [0, 1], F = B([0, 1]), P = λ|F =⇒ (Ω,F , P ) is a probability
space, P is called uniform distribution.

5) Distribution function

Definition 12. A cumulative probability distribution function is a non
decreasing right continuous function

F : R ∪ {±∞} → R ∪ {∞}

such that F (−∞) = 0, F (∞) = 1.

Likewise define Lebesgue-Stielties measure

Definition 13. Given such F there exists a unique (we will prove
uniqueness later) probability measure µF on (R, B(R)) such that µF ((a, b]) =
F (b)− F (a) for a < b.

1.3 Random Variables

Definition 14. A random variable (rv) is a mbl function

X : Ω→ R

Think of an RV as a function depending on the outcome of an experi-
ment.
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Definition 15. 1) Let X : Ω→ R be a RV then

µF (B) := P (X ∈ B)

[Recall {X ∈ B} is short hand for X−1{B} = {w ∈ Ω, X(w) ∈ B}.] de-
fines a probability measure on (R, B(R)), the distribution of X. Denote

µF = P ◦X−1

2) The function Fx : R→ [0, 1]

Fx(y) = P (y ≤ x) = µx((−∞, x]) x ∈ R

is the cumulative distribution function (cdf) of x.

Definition 16. Let X : (Ω,F , P ) → R and Y : (Ω̃, F̃ , P̃ ) → R be rv’s.
We say that they are identical distributed if

µX = µY

Remark 17. If X : Ω → (Rd, B(Rd)) d > 1 is mbl. X is called random
vector and the cdf is a function

FX : Rd → R

Fx(X1, X2, ..., Xd) = P (X1 ≤ x1, ..., Xd ≤ xd) = P (∩di=1{Xi ≤ xi})

Definition 18. Discrete distribution, µx is discrete if it is of the form

µx =
∑
x≥1

pnδxn pn ∈ [0, 1]

Definition 19. The distribution is absolutely continuous if the cdf Fx

is of the form
Fx(X) =

ˆ x

−∞
fX(y)dy

for some Borel mbl function fX called the probability density function
(pdf) of X.

Many famous distributions belong to either one of above

Example 20. of absolutely continuous distribution. Gaussian (or nor-
mal) distribution with parameter (µ, σ) ∈ R× R has density

f(x) =
1√
2πσ

e−
(x−x0)

2

2σ2

Later we’ll do central limit theorem, showing this is the limit of inde-
pendent experiments.
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Example 21. of discrete distribution: Poisson with parameter λ > 0

F (x) =
∑

0 ≤ n ≤ x
n ∈ N

e−λλ
n

n!

1.4 Independence

Definition 22. Let A,B ∈ F are independent (denotes A ⊥ B) ifLecture 3
(1/28/14) P (A ∩B) = P (A)P (B).

Suppose P (A) > 0,
P (B|A) = P (A ∩B)

P (A)

then A ⊥ B ⇐⇒ P (B|A) = P (A). Also note that A is independent of
itself iff

P (A) = P (A)2 ⇐⇒ P (A) = 0 or P (A) = 1

Definition 23. RV X,Y are independent if

X−1(A), Y −1(B) are independent, ∀A,B ∈ B(R)

Definition 24. Let I be any index set,
1) for each α ∈ I, let Aα ∈ F be an event, then (Aα)α∈I is independent
if

P (Aα1 ∩Aα2 ∩ ... ∩Aαn) =

n∏
i=1

P (Aαi)

for any finite family α1, ..., αn ∈ I of distinct indices.
2) for each α ∈ I, let Cα ⊆ F be a collection of events, then

(Cα)α∈I is independent if

Aα1 ∈ Cα1 , ..., Aαn ∈ Cαn =⇒ P (Aα1 ∩ ... ∩Aαn) =
n∏

i=1

P (Aαi)

for any finite family α1, ..., αn ∈ I of distinct indices.
3) for each α ∈ I, let Xα be a RV, then

(Xα)α∈I is independent if

(σ(Xα))α∈I is independent in the sense of 2)
Hence σ(X) := X−1(B(R)) = {X−1(B) : B ∈ B}.
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Exercise 25. Show a collection and pairwise independent event is not
independent in general.
Exercise 26. If (Aα)α∈I is a family of independent events and Bα ∈
{Aα, A

c
α}, then (Bα)α∈I is independent. So we can forget about defini-

tion 23.
Corollary 27. A family (Aα)α∈I of event is independent iff (σ(Aα))α∈I
is independent.
Note 28. σ(A) = {∅, Ω, A, Ac}.
Exercise 29. If (Cα)α∈I are independent collection of events, and Dα ⊆
Cα, then (Dα)α∈I are independent.
Exercise 30. If (Xα)α∈I are independent RV and fα : R → R are mbl
functions then

(fα(Xα)α∈I are independent

Hint: because σ(fα(Xα)) ⊆ σ(Xα).

2 Integration

We all know that Riemann integral is not suitable for advanced analysis,
because limit of Riemann integral functions are not always Riemann
integral. So we use Lebesgue.
Consider functions X : Ω → R̄ = [−∞,∞] on R̄, we use the σ field
{B(R), {−∞}, {+∞}}, hence

X : Ω→ R̄ is mbl iff

X−1(B(R)) ⊆ F and X−1(±∞) ∈ F iff
{X ≤ a} ⊂ F ∀ a ∈ R

recall {X = −∞} = ∩n≥1{X ≤ −n}.
Lemma 31. If X,Y : Ω→ R̄ are mbl, then {X > Y } ∈ F .

Proof. {X > Y } = ∪r∈Q{X > r} ∩ {r > y}, hence countable union of
measurable set is measurable.

Proposition 32. Let Xn : Ω→ R̄, n ≥ 1 be mbl then

supnXn, infnXn, lim supnXn, lim infnX are mbl.

Proof. {supxXn ≤ a} = ∩n{Xn ≤ a}, lim supXn = infn≥1 supm≥nXm.
The same way to prove inf .
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2.1 Simple Functions and Approximation

Definition 33. The indicator function of A ⊆ Ω is

1A(ω) =

{
1 ω ∈ A
0 ω ̸∈ A

Since {1A > a} ∈ {∅,Ω, A}, A mbl ⇐⇒ 1A is mbl.

Definition 34. X : Ω→ R is simple if it has finitely many values i.e.

{X(ω) : ω ∈ Ω}

is a finite set.

If X is simple and α1, ..., αN are the distinct values of X, then

X =

N∑
i=1

αi1{X=αi}

moreover X is amble off

{X = αi} ∈ F for i = 1, ..., N

Theorem 35. (Approximation theorem) Let X : Ω→ R̄ be any function.
There exists simple functions Xn : Ω→ R such that

lim
n
Xn(ω) = X(ω) ∀ω ∈ Ω

and 1) if X ≥ 0, then (Xn)n≥1 is monotone increasing;

2) if X is ml, then Xn are mbl;

3) if X is bounded, i.e. supω |X(ω)| <∞, then Xn → X uniformly, i.e.

sup
ω
|Xn(ω)−X(ω)| → 0

Proof. Assume X ≥ 0, defineLecture 4
(1/30/14)

Xn =

n2n∑
j=1

(j − 1)2−n1{(j−1)2−n≤X≤j2−n} + n1{X≥n}
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then on {X = +∞}, Xn = n ↑ X = ∞; on {X < ∞}, 0 ≤ X(ω) −
Xn(ω) ≤ 2−n ∀n ≥ X(ω). So Xn is monotone. If X is bounded, then

sup
ω∈Ω
|X(ω)−Xn(ω)| ≤ 2−n

for n large enough, so Xn → X uniformly. For general X, we have

X = X+ −X−

where X+ = max{0, X}, X− = (−X)+. Applying previous observation
to X± , we have

Yn → X+ and Zn → X−

with Xn = Yn − Zn, |X| = X+ +X−.

2.2 Integration and Non-negative Functions

Fix (Ω,F ,P), the idea is the following:

1) ˆ
1Adp = P (A)

2) By linearity ˆ
(
∑

αn1An)dp =
∑

αnP (Ab)

3) For X ≥ 0 let Xn as in the approximation therm and
ˆ
Xdp := lim

ˆ
Xndp

Note in probability, we write E[X] for
´
Xdp. And we want all results

in this section apply to general measures.
Notation 36.

M =M(Ω,F) = {X : Ω→ R̄ mbl}

M+ = {X ∈M, X ≥ 0}

S = {X ∈M | X simple}

S1 = {X ∈ S | X ≥ 0}

11



Definition 37. Let X ∈ S+ i.e.

X =

n∑
k=1

αk1Ak
with Ak = {X = αk}

E[X] :=

ˆ
Ω
Xdp =

n∑
k=1

αkP (Ak)

called weighted average.

Lemma 38. Let X,Y ∈ S+, A ∈ F , α ≥ 0

1) E[1A] = P (A)

2) E[αX] = αE[X]

3) E[X + Y ] = E[X] + E[Y ]

4) X ≤ Y =⇒ E[X] ≤ E[Y ]

Proof. As exercise.

Remark 39. The integral is taken over the whole space Ω
ˆ
A
Xdp :=

ˆ
(X1A)dp

Exercise 40. Let Z ∈ S+, then µ(A) := E[1A, Z] defines a measure µ.
Note µ(Ω) = E[Z] and Z is the density of µ wrt P .

Definition 41. Let X ∈M+ then

E[X] = sup{E[Z] : Z ∈ S+, Z ∈ X}

Proposition 42. Let X ≤ Y ∈M+ then E[X] ≤ E[Y ].

Proof. The sup in the definition of E[Y ] is taken over a larger set.

Proposition 43. (Chebyshev’s inequality) Let X ∈M+ and a > 0, then

P (X ≥ a) ≤ E[X]

a

Proof. Note that a1{X≥a} ≤ X1{X≥a} ≤ X, then take E, then use
monotonicity, we get

aP (X ≥ a) ≤ E[X]

12



Corollary 44. Let X ∈M+, then E[X] <∞ =⇒ P (X =∞) = 0.

Proof. ∀n ∈ N,

P (X =∞) ≤ P (X ≥ 0)
cheb.
≤ E[X]

n
→ 0.

Next we want to examine Xn → X in some sense =⇒ E[Xn] → E[X]
in some corresponding sense.

Theorem 45. (Monotone Convergence Theorem or called Beppo Levi’s
Theorem) Let Xn ∈M+, n ≥ 1 be a monotone increasing sequence and

X := lim
n
Xn = sup

n
Xn

then X ∈M+ and

E[X] = lim
n
E[Xn] = sup

n
E[Xn]

Proof. Recall that X is mbl as a limit of mbl functions. By monotonicity

E[Xn] ≤ E[Xn+1] ≤ ... ≤ E[X] ∀n

hence limE[Xn] ≤ E[X]. It remains to show limE[Xn] ≥ E[X]

Next by definition of E[X], we need to show limE[Xn] ≥ E[Z] ∀Z ∈ S+
with Z ≤ X so let Z ∈ S+ and let α ∈ (0, 1), define

An = {Xn ≥ αZ}

then An ↑ Ω, moreover by monotonicity

αE[Z1An ]︸ ︷︷ ︸
µ(An)

≤ E[Xn1An ] ≤ E[X] (2.1)

Consider the finite measure µ(A) := E[Z1A]. By continuity of measure

limµ(An) < µ(Ω) = E[Z]

With (2.1), we get
αE[Z] ≤ limE[Xn]

α ∈ (0, 1) was arbitrary =⇒ E[Z] ≤ limE[Xn].
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Note that in the proof we used continuity of measure

An ↑ or ↓ A =⇒ µ(An) ↑ or ↓ µ(A)

it only holds for µ(A) <∞, because its proof involves complement.

Proposition 46. Let X,Y ∈M+α ≥ 0 then 1)

E[αX] = αE[X]

2)
E[X + Y ] = E[X] + E[Y ]

Proof. 1) Let Zn ∈ S+ with Zn ↑ X by approximation theorem

E[αX] = E[limαZn]
MCT
= limE[αZn]

linearity
=
S+

α limE[Zn]
MCT
= αE[α].

2) take also Z̃n ↑ Y , Z̃n ∈ S+

E[X + Y ] = E(lim(Zn + Z̃n))
MCT
= limE(Zn + Z̃n)

linearity
= lim(E(Zn) + E(Z̃n)) = limE[Zn] + limE[Z̃n]

MCT= E[X] + E[Y ]

Theorem 47. (Faton’s lemma) Let Xn ∈M+, n ≥ 1 thenLecture 5
(2/4/14)

E[lim inf
n→∞

Xn] ≤ lim inf
n→∞

E[Xn]

Proof. Let Yn = infk≥nXk, then

Yn ↑ lim inf
n→∞

Xn and Yn ≤ Xn for k ≥ n

By monotonicity E[Yn] ≤ infk≥nXn → lim infk→∞E[Xk] as n → ∞.
Hence

E[lim inf
n→∞

Xn] = E[limYn]
MCT= limE[Yn] ≤ lim infE[Xn]
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Proposition 48. Let X ∈M+ and define

µ(A) = E[X1A]

then µ is a measure.

Definition 49. A ⊂ Ω is a null set if A ⊆ B ∈ F and P (B) = 0

Definition 50. A property is said to hold almost surely (a.s) or almost
everywhere (a.e) if it holds outside a null set. E.g.

X = 0 a.s means that {X ̸= 0} is a null set.

Null set is not a big deal, since we can always redefine measure, i.e.
completion.

Lemma 51. Let X ∈M+ then E[X] = 0 ⇐⇒ X = 0 a.s

Proof. =⇒

P (X > 0)
MCT
= lim

n→∞
P (X >

1

n
)

cheb
≤ lim

n
nE[X] = 0

⇐= Let Xn = n1{X>0} then

E[Xn] = nP (X > 0) = 0

Note

X ≤ ∞1{X>0} = limXn
MCT=⇒ E[X] ≤ E[limXn] = limE[Xn] = 0

A more general result

Proposition 52. Let X,Y ∈M+ then

X = Y a.s. =⇒ E[X] = E[Y ]

Proof. Let A = {X = Y }, B = {X ̸= Y }. By previous lemma

E[, X1B] = E[Y 1B] = 0

By definition of A, E[X1A] = E[Y 1A] , hence

E[X] = E[X[1A + 1B]] = E[X1A] + E[X1B]

= E[Y 1A] + E[Y 1B] = E[Y [1A + 1B]] = E[Y ]
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2.3 Integrable Functions

Definition 53. L0 = {X : Ω→ R, mbl}

Definition 54. X : Ω→ R̄ is integrable if it’s measurable and E[X+] <
∞ and E[X−] <∞

Definition 55. L1 = {X ∈ L0 : X integrable}.

Lemma 56. Let X : Ω→ R be mbl

1) X ∈ L1 ⇐⇒ E[|X|] <∞

2) |E[X]| ≤ E[|X|] for X ∈ L1

The reason to restrict X real-valued function is to use subtraction with-
out worrying ∞−∞.

Proof. 1) E[|X|] = E[X+ +X−] = E[X+] + E[X−]

2)
|E[X]| =

∣∣E[X+ −X−]
∣∣ ≤ E[X+] + E[X−] = E[|X|]

Lemma 57. Let X ∈ L0, Y ∈ L1 and |X| ≤ |Y | then X ∈ L1.

Proof. By previous lemma,

Y ∈ L1 =⇒ E[|Y |] <∞ =⇒ E[X] <∞ =⇒ X ∈ L1

Theorem 58. L1 is a vector space and E : L1 → R is linear.

Proof. As an exercise.

Theorem 59. (Dominated Convergence theorem or called Lebesgue
Theorem) Let Xn, X ∈ L0 and

1) Xn → X a.s. 2) ∃Y ∈ L1 s.t. |Xn| ≤ |Y | a.s. for all n.

then Xn, X ∈ L1 and

i) E[Xn]→ E[X] ii) E[|Xn −X|]→ 0
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Proof. Since |E[Xn]− E[X] ≤ E[|Xn −X|]| , it suffices to check ii) first.
We may assume 1), 2) hold everywhere by setting Xn, X to 0 on the
null set and Y > 0, so by Faton,

E[|X|] = E[
∣∣∣lim inf

x
Xn

∣∣∣] ≤ lim inf
n

E[|Xn|] ≤ E[|Y |] <∞

Next let Yn = |X|+ Y − |Xn −X| , then Yn ≥ 0, Yn ∈ L1, by Faton

E[|X|+ Y ] = E[limYn] ≤ lim inf
n→∞

E[Yn]

= lim inf
n→∞

E[|X|+ Y − |Xn −X|]

= E[|X|+ Y ]︸ ︷︷ ︸
<∞→0

− lim sup
n→∞

E[|Xn −X|]

so
limE[|Xn −X|] = 0

3 Convergence

3.1 Lp Spaces

For this discussion, unless mentioned, everything should work for general
measure.

Definition 60. Let V be a vector space (over R) Let ∥·∥ : V → R be
used that

1) ∥v∥ ≥ 0 ∀ v ∈ V

2) ∥αv∥ = |α| ∥v∥ ∀α ∈ R v ∈ V

3) ∥v + w∥ ≤ ∥v∥+ ∥w∥ ∀ v, w ∈ V then ∥·∥ is called a semi-norm

if also

4) ∥v∥ = 0 ⇐⇒ v = 0, then ∥·∥ is a norm.

Proposition 61. ∥·∥1 : L1 → R , ∥X∥1 = E[X] is a semi-norm.

Proof. It follows directly from monotonicity and linearity of E.

We have to get rid of null sets to get a proper norm.
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Definition 62. L2 = L1(Ω, R̃,P ) is defined as the set of equivalenceLecture 6
(2/6/14) class

L1 = L1/ ∼

where X ∼ Y ⇐⇒ X = Y a.s. We could denote [X] the equivalence
class of X, but it is standard to identity X as [X].

Theorem 63. (L1, ∥·∥1) is a normed vector space.

Proof. ∥X − Y ∥ = 0 ⇐⇒ |X − Y | = 0 a.s. ⇐⇒ [X] = [Y ].

Definition 64. Let 1 ≤ p <∞ then

Lp = {X : R→ R mbl E[|X|p] <∞}
Lp = Lp/ ∼

∥X∥p = (E[|x|p])1/p

Theorem 65. (Holder inequality) Let 1 < q, p <∞ be s.t.

1

p
+

1

q
= 1

(p, q) are called conjugate. Let X ∈ Lp, Y ∈ Lq then

∥XY ∥1 ≤ ∥X∥p ∥Y ∥q

Proof. WOLG assume ∥X∥p , ∥Y ∥q ̸= 0, applying Young’s inequality
with α = |X| / ∥X∥p , β = |Y | / ∥Y ∥q , then

|XY |
∥X∥p ∥Y ∥q

≤ |X|p

p ∥X∥pp
|Y |q

q ∥Y ∥qq

taking E[], we get

∥XY ∥1
∥X∥p ∥Y ∥q

≤
∥X∥pp
p ∥X∥pp

∥Y ∥qq
q ∥Y ∥qq

=
1

p
+

1

q
= 1

Corollary 66. (Cauchy-Schwartz) For X,Y ∈ L2

∥XY ∥1 ≤ ∥X∥2 ∥Y ∥2

i.e.
E[|XY |] ≤

√
E[X2]E[Y 2]
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Theorem 67. (Generalized Triangle Inequality or Minkowski Inequal-
ity) X,Y ∈ Lp , p ≥ 1 then

X + Y ∈ Lp

and
∥X + Y ∥p ≤ ∥X∥p + ∥Y ∥p

Proof. We are done with p = 1. Let p > 1 and put q such that 1
p+

1
q = 1,

we have

|X + Y |p ≤ 2p(max{|X| , |Y |})p ≤ 2p(|X|p + |Y |p)

that is
E[|X + Y |p] ≤ 2p(E[|X|p] + E[|Y |p])

moreover

|X + Y |p = |X + Y | |X + Y |p−1 ≤ |X| |X − Y |p−1 + |Y | |X + Y |p−1

(3.1)
Since |X + Y |p ∈ L1 and (p− 1)q = p, we have |X + Y |p−1 ∈ Lq. Then
apply Holder

E[|X||X + Y |p−1] ≤ ∥X∥p
∥∥∥|X + Y |p−1

∥∥∥
q
= ∥X∥p ∥X + Y ∥p/qp

Then by (3.1)

∥X + Y ∥pp ≤ (∥X∥p + ∥Y ∥p) ∥X + Y ∥p/qp

Corollary 68. (Lp, ∥·∥p) is a normed vector space.

Definition 69. Let Xn, X ∈ Lp, we say that Xn → X in Lp if

∥Xn −X∥ → 0

i.e. E[|Xn −X|p]→ 0.

Definition 70. A normed vector space is a Banach space, if it is com-
plete, i.e. all Cauchy sequence converge.
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Theorem 71. (Riesz Fischer) Let 1 ≤ p ≤ ∞ and let (Xn)n≥1 ∈ Ln be
Cauchy, then

1) ∃X ∈ Lp s.t.
Xn → X in Lp

2) ∃ a sub sequence (Xnk
)k≥1 such that Xnk

(ω) → X(ω) for almost
every ω.

Proof. Since (Xn) is Cauchy, we can take a “fast” sub sequence Yk = Xnk

st.t.
∥Yk+1 − Yk∥p ≤ 2−k, k ≥ 1

Let Hn =
∑n

k=1 |Yk+1 − Yk| by Minkowski

∥Hk∥ ≤
n∑

k=1

∥Yk+1 − Yk∥ ≤ 1

Let H = limnHn =
∑∞

k=1 |Yk+1 − Yk|

E[Hp] = E[limHp
n]

MCT
= limE[Hp] ≤ 1 =⇒ N = {H =∞} is a nullset.

For ω ∈ Ω/ ∼ Hn(ω) ↑ H(ω) <∞ and (Yn(ω))n≥1 is Cauchy in R. For
n > m > 1

|Ym(ω)− Yn(ω)| ≤ |Ym(ω)− Ym−1(ω)|+ .... |Yn(ω)− Yn−1(ω)|
= Hm(ω)−Hn(ω) is Cauchy

R is complete =⇒ (Yn(ω))n has a limit, call it Y (ω). For ω ∈ N , set
Y (ω) = 0.

TO see that Yn → Y in Lp

lim
n
∥Y − Yn∥pp = limE[|Y − Yn|p] = E[lim |Y − Yn|] = 0

The second equality above is given by DCT with |Y − Yn|p ≤ Hp ∈ L1.

We have proved any sub sequence of (Xn) has a sub sequence which
converges in Lp and the limit is always Y .

This implies that (Xn) itself converges to Y .

Remark 72. We have proved something more. Xn Cauchy
∑

n ∥Xn −Xn−1∥p <
∞ =⇒ Xn converges a.s.
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3.2 L∞ Space

Definition 73. L∞ is the space of mbl function that are bounded

L∞ = {X : Ω→ R mbl ∃ c ∈ R s.t. |X| ≤ c a.s.}

∥X∥∞ = {c ∈ R : |X| < c a.s.}

Definition 74. L∞ = L∞/ ∼

Theorem 75. (L∞, ∥·∥∞) is Banach.

Remark 76. Work only for finite measure

1) If X ∈ L∞, then X ∈ Lp ∀ 1 ≤ p <∞ and ∥X∥∞ = lim∞ ∥X∥p
2) Conversely if supp→∞ ∥X∥p <∞, then X ∈ L∞.

Proof. As exercise

Theorem 77. (Jensen)Let X ∈ L1 and let ψ : R → R ∪ {∞} be aLecture 7
(2/11/14) convex function, then

E[ψ(X)] ≥ ψ(E[X])

Proof. Let X0 ∈ ψ(X), Since ψ is convex, ∃ a, b ∈ R s.t.

aX + b ≤ ψ(X) ∀X ∈ R

and
aX0 + b = ψ(X0)

so
E[ψ(X)] ≥ E[aX + b] = ψ(X) + b = aX0 + b = ψ(E[X])

Corollary 78. ∀ 1 ≤ p ≤ q ≤ ∞,

L1 ⊇ Lp ⊇ Lq ⊇ L∞ and ∥·∥p ≤ ∥·∥q

Proof. Let p ≤ q <∞ then X 7→ Xp/q is convex. For X ∈ Lp

E[|X|p] = E[|X|p]ϵ/p ≥ E[|X|ϵ]q/p
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Definition 79. (Convergence in measure/probability) Let Xn, X be RV
on (Ω,F ,P), we say that Xn → X in measure (or Xn

P→ X) if

P (|Xn −Xm| > α)→ 0 as m,n→∞

Theorem 80. Let (Xn) be Cauchy in measure P

1) ∃ a RV X s.t. Xn
P→ X

2) ∃ a sub sequence Xnk
→ X a.s.

Proof. Use the fast sub sequence (Yk) as before, then

Ak = {ω : |Yk+1(ω)− Yk(ω)| ≥ 2−k}

we have
P (Ak) ≤ 2−k

Bk =
∪
j≥k

Aj , B =
∩
k∈N

Bk

then
P (Bk) ≤

∑
j≤k

P (Aj) ≤
∑
j≥k

2−k ≤ 2−(k−1) ∀ k ≥ 1

Hence P (B) = 0. Let ω ̸∈ BC
k0

for some k0 ∈ N

BC
k0 =

∩
j≥k0

AC
j =

∩
j≥k0

{|Yk+1 − Yj | < 2−j}

For i ≥ j ≥ k0

|Yi(ω)− Yj(ω)| ≤ |Yi(ω)− Yi−1(ω)|+ ...+ |Yj+1(ω)− Yj(ω)|

≤ 1

2i−1
+ ...+

1

2j
≤ 1

2j−1
(3.2)

then (Yi(ω))i≥1 is Cauchy in R, let

X(ω) =

{
limYi(ω) ω ̸∈ B
0 ω ∈ B

Since ω /∈ Bk =⇒ by (3.2),

|Yk(ω)−X(ω)| ≤ 1

2k−1
(3.3)
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for j ≥ k. We have Yk → X uniformly on BC
k , in particularly Yk → X

a.s.

We have Yk
P→ X, and by (3.3)

P (|Xα −X| > α) ≤ P (|Xn −Xk| ≥
α

2
)+P (|Yk −X| ≥

α

2
)→ 0+0 = 0

for n, k →∞, because they are Cauchy.

Definition 81. L0 = L0/ ∼

Notation 82. x ∧ y = min{x, y}

Theorem 83. (this only works for finite measure) Let

d(X,Y ) = E[|X − Y | ∧ 1]

X,Y ∈ L0, then (L0, d) is a complete metric space. Moreover d−convergence
is equivalent to convergence in measure and d−Cauchy is equivalent to
Cauchy in measure.

Corollary 84. (true for general measure) A sequence can have at most
one limit in measure and any Cauchy sequence in measure converges in
measure.

Corollary 85. (for probability measure) Let Xn, X ∈ L0 then Xn → X
a.s. implies

Xn
P→ X

Proof. Use DCT.

Theorem 86. 1 ≤ p ≤ ∞

Xn
Lp

−→ X =⇒ Xn
P−→ X

or called L0 convergence.

Proof. (first proof, using probability measure)

Xn → X in Lp =⇒ Xn → X in L1

so
|Xn −X| ∧ 1→ 0 in L1

i.e. d(Xn, X)→ 0.
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(second proof, general measure)

a) p <∞, let
An(α) = {|Xn −X| > α},

then

E[|X −Xn|p] ≥ E[1An |X −Xn|p] ≥ E[αp1An ] = αpP (An)

Hence P (An)→ 0 ∀α > 0.

b) p =∞, ∀α > 0 ∃N ∈ N s.t. ∥Xn −X∥∞ <∞ ∀n ≥ N hence

∀n ≥ N, P (|Xn −X| > α) = 0 ∀n ≥ N

Convergence Summary for probability measure:

strong L∞

↑
...

↑

↓

...

...
L1

...

subseq
↘
↖

DCT

↓

...

...

...

”a.s. convergence”

weak L0

subseq
↗
↙

directly imply
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3.3 Uniform Integrability

In this section, P has to be finite measure.

Definition 87. A family (Xλ)λ∈I of RV is uniformly integrable (UI) if

lim
c→∞

sup
λ∈Λ

E[|Xλ| 1|Xλ|≥c] = 0

Remark 88. If (Xλ)λ∈I is UI then (Xλ) is bounded in L1 i.e.

sup
λ∈Λ
∥Xλ∥1 <∞

Proof.

∥Xλ∥1 = E[|Xλ|] = E[|Xλ| 1|Xλ|<c]︸ ︷︷ ︸
≤c

+ E[|Xλ| 1|Xλ|≥c]︸ ︷︷ ︸
→0 uniform in λ

hence it’s bounded.

Theorem 89. (ϵ− δ Criterion) Let (Xλ)λ∈I be rv’s. The following are
equivalent
1) (Xλ) is UI
2) a) (Xλ) is bounded in L1 b) ∀ ϵ > 0 ∃ δ > 0 s.t.

A ∈ F , P (A) ≤ δ =⇒ sup
λ
E[|Xλ| 1A] ≤ ϵ

Proof. Assume 1) with remark 88 =⇒ 2)a). To see b) Let ϵ > 0, ∀ c

E[|Xλ| 1A] ≤ cP (A) + E[|Xλ| 1|Xλ|>c]

cP (A) ≤ ϵ
2 for δ = ϵ

2c , and E[|Xλ| 1|Xλ|>c] ≤ ϵ
2 for large c, so

E[|Xλ| 1A] ≤ ϵ

Now assume 2) let
α = sup

λ
E[|Xλ|]

By Chebyshev
P (|Xλ| > c) ≤ E[Xλ]

c
≤ α

c

By assumption,
E[|Xλ| 1|Xλ|>c] ≤ ϵ

for c large.

25



Example 90. 1) finite subset

{X1, ..., XN} ⊆ L2

are UI
2) Y ∈ L1, |Xn| ≤ Y =⇒ (Xn)n≥1 is UI
3) (Xλ) UI, Y ∈ L1 =⇒ Y +Xλ is UI.

Theorem 91. Let Xn,X be rv’s s.t.

Xn
L0

−→ X

then
Xn

L1

−→ X ⇐⇒ (Xn) is UI

Most of time people use ⇐= part of the theorem.

Proof. WOLG X ≡ 0Lecture 8
(2/13/14) (⇐=) Let (Xn) be UI we have

E[|Xn|] ≤ ϵ+E[|Xn| 1|Xn|>c] ∀ ϵ > 0 (3.4)

As Xn → 0, given δ > 0, ϵ > 0 ∃ k0 s.t.

P (|Xk| > ϵ) ≤ δ ∀ k ≥ k0

using the δ − ϵ criterion with A = {|Xn| > ϵ} we get

E[|Xn| 1|Xn|>c] ≤ ϵ

with (3.4) we have the conclusion.

( =⇒ ) Let Xn
L1

−→ X i.e.

E[|Xn|]→ 0

Let ϵ > 0,
E[|Xn| 1|Xn|>c] ≤ E[|Xn|] ≤ ϵ

for n ≥ N(ϵ).
Moreover for c large, E[|Xn| 1|Xn|>c] ≤ ϵ for n = 1, ..., N(ϵ).
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Theorem 92. (delia-wallace-pansino) TFAE

1) (Xλ) is UI

2) ∃ψ : R+ → R+ mbl, increasing s.t.

lim
X→∞

ψ(X)

X
= +∞

and
sup
λ
E[ψ(Xλ)] <∞

Proof. We only show 2) =⇒ 1) Let α > 0 for C large enough ψ(X) ≥
αX ∀X ≥ c Hence

ψ(|Xλ|) ≥ α |Xλ|

on
{|Xλ| ≥ c} =⇒ E[|Xλ| 1|Xλ|>c] ≤

E[ψ(|Xλ|)]
α

≤ const
α

Corollary 93. If (Xλ) is bounded in L1+ϵ for some ϵ > 0 i.e.

sup
λ
E[|Xλ|1+ϵ] <∞

then (Xλ) is UI.

Proof. Take ψ(X) = X1+ϵ.

Recap what we did

E[X]2

E[1A] = P (A)

E[
∑

αn1An ] =
∑

anP (An)

E[X] = sup{E[Z] : Z ≤ X Z simple} with X ≥ 0

E[·] linear on L1

MCT Xn ↑ X, X− ∈ L1 =⇒ E[Xn]→ E[X]

E[|Xn −X|]→ 0 if X ∈ L1

Faton Xn ≥ Y s.t. Y − ∈ L1

E[lim infXn] ≤ lim infE[Xn]

DTC |Xn| ≤ Y ∈ L1, Xn → X a.s. (or in P ) =⇒ Xn
L1

−→ X
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4 Simple Random Walks

4.1 Binomial Walk

Definition 94. Let I ⊆ R “time”, a stochastic process is a function

S : Ω× I → R or something else
(ω, t) 7→ St(ω) or S(t, ω)

E.g I = [0,∞) continuous time process, I = N discrete time.

Two equivalent ways of thinking about it

1) “a family of r.v.” indexed by t

2) a family of function t 7→ St(ω) indexed by ω, and t 7→ St(ω) is called
sample path.

Definition 95. A random walk on Z (starting at 0) is a process

Sk =
k∑

j=1

Xj , k = 0, 1, ...

where (Xj)j≥1 are iid with values in Z.

• S is simple r.v. if P (X1 = 1) = p, P (X1 = −1) = 1− p = q

• S is symmetric if p = q = 1/2

Note existence of a random walk with given distribution of X1 is true
but not trivial, which we will show later.

A model for simple random walk is N steps: Ω = {w1, ...., wN} = {±1}N
wi ∈ {±1}

F = P(Ω), P (A) = |A|
|Ω|

Example 96. Let S be a simple random walk,

S0 = 0, Sk =
k∑

j=1

Xj ,(Xj)j≥1 iid

with P (Xj = 1) = p ∈ [0, 1], and P (Xj = −1) = 1 − p = q. Later we
will show in 1 or 2D, all destinations within the range are reachable, but
in 3D it is not the case.
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Definition 97. A r.v. Z has Binomial (n, p) distribution Z ∼ B in
(n, p) if

P (Z = k) =

(
n
k

)
pk(1− p)n−k,k = 0, ..., n

where
(
n
k

)
= n!

k!(n−k)!

This is the number of successes out of n independent trials if each success
has probability p.

Proposition 98.

P (Sn = k) =


(

n
n+k
2

)
p

n+k
2 q

n−k
2 k ∈ {−n, ..., n}

0 else

Proof. Let

An = #{k ≤ n : Xk = 1}
Bn = #{k ≤ n : Xk = −1}

then

Sn = An −Bn =⇒ 2An = Sn +An +Bn = Sn + n =⇒ An =
Sn + n

2

so
P (Sn = k) = P (An =

k + n

2
)

The following theorem used beyond random walk

Proposition 99. (Reflection Principle) For k > 0, l ≥ 0

# paths of length n from 0 to k − l visiting k at laest one
=

# paths of length n from 0 to k + l visiting k at laest one

=


(

n
n+k+l

2

)
if n+k+l

2 ∈ {0, 1, ..., n}

0 else
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Proof. By picture.

Definition 100. The passage of time is defined as for k ∈ Z, letLecture 9
(2/18/14)

Tk =

{
first time walk visiting k if k ̸= 0

first time return to 0 k = 0
= min{n : n > 0 and Sn = k}

Corollary 101. (corollary of reflection principle) If p = q = 1/2,

P (Tk ≤ n, Sn = k − l) = P (Sn = k + l)

for k > 0, l ≥ 0 (similar result for k < 0, l ≤ 0)

Corollary 102. (second corollary of reflection) If p = q = 1/2, k ̸= 0

P (Tk ≤ n) = 2P (Sn < k) + P (Sn = k) = P{Sn /∈ [−k, k)}

Proof.

P (Tk ≤ n) =
∑
b∈Z

P (Tk ≤ n, Sk = b) =
∑
b≥k

P (Sn = b) +
∑
b<k

P (Sn = 2k − b)

= P (Sn ≥ k) + P (Sn > k)

= P (Sn ≥ k) + P (Sn < k) = P{Sn /∈ [−k, k)}

Theorem 103. (Passage Time Theorem) If k ̸= 0

P (Tk = n) =
|k|
n
P (Sn = k) =

|k|
n

(
n

n+k
2

)
p

n+k
2 q

n−k
2

Proof. WLOG k > 0, how many paths with Tk = n are there?

Claim: it is

# paths of length n− 1 from 0 to (k − 1)

−
# subsets of paths of those paths visiting k before (n− 1)

=

(
n− 1

n−1+k−1
2

)
−
(

n− 1
n−1+k+1

2

)
= k

n

(
n

n+k
2

)
also each such path has n+k

2 up steps and n−k
2 down steps =⇒ each

such path has weight pn+k
2 q

n−k
2 .
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Theorem 104. (First Return to 0) For q = p = 1/2

1)

P (T0 = 2n) = P (T1 = 2n− 1) =
1

2n− 1

(
2n− 1
n

)
2−(2n−1)

2)

P (T0 > 2n) = P (S2n = 0) =

(
2n
n

)
2−2n

Proof. 1)

P (T0 = 2n) = P (S1 ̸= 0, ..., S2n−1 ̸= 0, S2n = 0)

= 2P (S1 = −1, S2 − S1 ≤ 0, ..., S2n−1 − S1 ≤ 0, S2n − S1 = 1)

= 2P (S1 = −1)︸ ︷︷ ︸
1/2

P (S2 − S1 ≤ 0, ..., S2n−1 − S1 ≤ 0, S2n − S1 = 1)

Note Ŝn = Sn−1 − S1, n ≥ 0 is another simple random walk

Ŝn = P (Ŝ1 ≤ 0, ...Ŝ2n−2 ≤ 0, Ŝ2n−1 ≤ 1)

= P (S1 ≤ 0, ...S2n−2 ≤ 0, S2n−1 = 1)

= P (T1 = 2n− 1)

=
1

2n− 1

(
2n− 1
2n−1+1

2

)(
1

2

) 2n−1+2n−1
2

(
1

2

) 2n−1−(2n−1)
2

=
1

2n− 1

(
2n− 1
2n−1+1

2

)(
1

2

)2n−1

2) By 1)

P (T0 > 2n) = P (T1 > 2n− 1)

= 1− P (T1 ≤ 2n− 1)

= 1− P (S2n−1 /∈ [−1, 1)) (4.1)
= P (S2n−1 /∈ {−1, 0})
= P (S2n−1 = −1) = P (S2n = 0) (4.2)

Equality (4.1) is from corollary 102.

Corollary 105. If p = q = 1/2 then

P (Tk <∞) = 1

for all k ∈ Z. That is every state k is recurred at the end a.s.
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Proof. Use Stirling formula n! ∼ (n/e)n
√
2πn, so(

2n
n

)
2−2n ∼ 1√

πn

Case 1: Let k ̸= 0 we know by corollary 101

P (Tk > 2n) = P (S2n ∈ [−k, k))

note also P (S2n = k) ≤ P (S2n = 0) ∀ k.

P (Tk > 2n) ≤ 2kP (S2N = 0)

= 2k

(
2N
N

)
2−2N

∼ 2k
1√
πN

=
const√
N
→ 0

Case 2: k = 0
P (T0 > 2N) = P (S2N = 0)→ 0

by the same argument.

Corollary 106. E[T0] =∞, that is it will take long time to return.

Proof.

E[T0] =
∑
k≥1

kP (T0 = k) =
∑
k≥1

P (T0 ≥ k) =
∑
k≥0

P (T0 > k)

≥
∑
k≥0

P (S2k = 0)︸ ︷︷ ︸
≥const√

k

=∞

Proposition 107. For 0 < k ≤ N, k +N even

P (S1 > 0, ..., SN−1 > 0|SN = k) =
k

N

i.e. independent of q, p.

Theorem 108. (Last visit to 0) Let p = q = 1/2 Fix N ∈ N andLecture 10
(2/20/14) consider the least visit to 0 before 2N

L2N = max{m ≤ 2N,Sm = 0}
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then
P (L2N = 2n) =

(
2n
n

)(
2N − 2n
N − n

)(
1

2

)2N

i.e. the L2N/2N has the so-called discrete arcsine distribution.

Proof.

P (L2N = 2n) = P (S2n = 0, S2n+1 ̸= 0, ..., S2N ̸= 0)

= P (S2n = 0, S2n+1 − S2n ̸= 0, ..., S2N − S2n ̸= 0)

= P (S2n = 0)P (S2n+1 − S2n ̸= 0, ..., S2N − S2n ̸= 0)

So

Ŝj = S2n+j − S2n =

j∑
i=1

X2n+i is another random walk

= P (S2n = 0)P (Ŝ1 ̸= 0, ..., Ŝ2N−2n ̸= 0)

= P (S2n = 0)P (S1 ̸= 0, ..., S2N−2n ̸= 0)

= P (S2n = 0)P (T0 > 2N − 2n)

= P (S2n = 0)P (S2N−2n = 0)

=

(
2n
n

)(
1

2

)2n(
2N − 2n
N − n

)(
1

2

)2N−2n

Remark 109. 1) L2N is typically close to 0 or 2N .
2) Arcsine is motivated as follows

theorem 108 + stirling =⇒ P (L2N = 2n) ∼ 1

π
√
n(N − n)

so for N large and X ∈ [0, 1]

≈
∑

P (
L2N

2N
≤ X) =

∑
n≤XN

P (L2N = 2n) ≈
∑

n≤XN

1

π
√
n(N − n)

≈
∑

n n
N
≤X

1
N

π
√

n
N (1− n

N )
≈
ˆ X

0

dx

π
√
x(1− x)

=
2

π
arcsin

√
X
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4.2 Gambler’s Ruin

In this section T0 ≡ 0.
we study P (Ta1 < Ta2) for a1, a2 ∈ Z, a1 < 0 < a2, so this is probability
of hitting a1 before a2 (hitting a2 means broken)
Notation 110. b ∈ {1, 2, ....} total capital, S ∈ N S ≤ b gambler’s initial
capital, b− S casino’s initial capital.

In each iid round, one player pays $1 to the other. P =probability of
gambler winning one round.

{T−S < Tb−S} = {gambler is ruined before casino}
{T−S > Tb−S} = {casino is ruined before gambler }

Proposition 111. 1) if p ̸= 1/2

P (T−S < Tb−S) =

(
q
p

)S
−
(
q
p

)b
1−

(
q
p

)b

P (T−S > Tb−S) =
1−

(
q
p

)S
1−

(
q
p

)b
2) if p = 1/2, fair game

P (T−S < Tb−S) = 1− S

b

P (T−S > Tb−S) =
S

b

In particular
P (T−S = Tb−S) = 0

The proof is more important than the result, because it illustrates an
important trick.

Proof. For S = 1, ..., b− 1

h(S) = P (T−S < Tb−S)

= P (T−S < Tb−S |X1 = 1)P (X1 = 1) + P (T−S < Tb−S |X1 = −1)P (X1 = −1)
= P (T−(S+1) < Tb−(S+1)p+ P (T−(S−1) < Tb−(S−1)q

= h(S + 1)p+ h(S − 1)q
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To solve above difference equation, we need boundary condition

h(1) = 1, h(b) = 0

so

h(S) =

A+B
(
q
p

)S
p ̸= q

A+BS p = q

the formula for P (T−S > Tb−S) are found similarly.

What is the duration T−S ∧ Tb−S?

Proposition 112.

E[T−S ∧ Tb−S ] =


S

q−p −
b

q−p

1−
(

q
p

)S

1−
(

q
p

)b p ̸= q

S(b− S) p = q

Proof. Let DS = T−S ∧ Tb−S ,

f(S) = E[DS ] =
∑
k≥0

kP (DS = k)

=
∑
k

k (P (DS = k|X1 = 1)p+ P (DS = k|X1 = −1)q)

=
∑
k

k (P (DS+1 = k)p+ P (DS−1 = k)q)

= E[1 +DS+1]p+ E[1 +DS−1]q

= 1 + f(S + 1)p+ f(S − 1)q

difference equation boundary condition f(0) = f(b) = 0

What if the casino has ∞ capital?

If b =∞, then Tb−S =∞ gambler cannot win, but maybe he can survive
T−S =∞

P (T−S <∞) = lim
b→∞

P (T−S < Tb−S) =

1 p ≤ 1/2(
q
p

)S
p > 1/2

Example 113. Roulette p = 18
37 for casino. A capital $128 with $1

round is enough for probability > .999.
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The duration of the game for b→∞

E[T−S ] = lim
b→∞

E[T−S ∧ Tb−S ] =

{
∞ p ≥ 1/2

S/(q − p) p < 1/2

Hence if the game is fair, the gamble will be ruined eventually but it
may take very long.

5 Conditional Expectation

Let (Ω,F ,P) be a given probability space, put A ⊆ F sub σ−field.Lecture 11
(2/25/14) A = {Ai, i ≥ 1}

E[X|A]ω =
∑
i

E[X1Ai ]

P (Ai)
1Ai(ω)

Best L2 approximation of X is A mbl. Recall that

H := L2(Ω,F ,P) = L2(F)

is a Banach space. < X,Y >= E[XY ] X,Y ∈ L2 defines an inner
product, which induces the L2 norm, that is (H,< · >) is a Hilbert
space (a complete inner product space).

Theorem 114. Let {0} ̸= U be a closed linear subspace of a Hilbert
space. Then there exists a linear mapping Π : H → U s.t.
1) Π2 = Π i.e. Π2(x) = Π(x) ∀x ∈ H

2) < x−Π(x), y >= 0 ∀x ∈ H, y ∈ U

moreover ∥x−Π(x)∥ = miny∈U ∥x− y∥ i.e. Π(x) is the best approxima-
tion to x in U .

We will show the proof later using completeness.

Proposition 115. Let X ∈ L2(F) then ∃Y ∈ L2(A) s.t.
1) E[X1A] = E[Y 1A] ∀A ∈ A

2) E[XZ] = E[Y Z] ∀Z ∈ L2(A)

Proof. Recall that L2(A) ⊆ L2(F) is complete =⇒ it is closed =⇒
∃Π : L2(F)→ L2(A) orthogonal projection. Set Y = Π(X) then

< X − Y, Z >= 0 ∀Z ∈ L2(A) ⇐⇒ E[XZ] = E[Y Z]

i.e. 1), 2) are a special case of property of Hilbert space.
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Remark 116. X ≥ 0 a.s. =⇒ Y ≥ 0 a.s.

Proof. take A = {Y < 0} in 1) above.

Lemma 117. Let Y1,2 ∈ L1(A) if E[Y11A] = E[Y21A] for all A ∈ A,

Y1 = Y2 a.s.

Proof. Let A = {Y1 < Y2}, then

E[(Y1 − Y2)1A] = 0 =⇒ P (A) = 0

This is even true for Y1,2 ∈ L0
+.

Corollary 118. Let X ∈ L1(F), ∃ at most one Y ∈ L1(A) s.t.

E[X1A] = E[Y 1A] ∀A ∈ A

Proposition 119. Let X ≥ 0 there exists an (a.s.) unique A-mbl

Y : Ω→ R̄+ s.t. E[X1A] = E[Y 1A] ∀A ∈ A

Proof. For n ≥ 0 let Xn = X ∧ n then Xn ↑ X a.s. and Xn ∈ L2(F).
Let Yn = Π(Xn) then

Y0 ≤ Y1 ≤ ... ≤ .... a.s.

define Y = limn Yn then Y is a A−mbl and for all A ∈ A

E[y1A] = E[lim
n
Yn1A] = limE[Yn1A]

= limE[Xn1A] = E[limXn1A] = E[X1A]
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5.1 Definition

Definition 120. If X ≥ 0 is any RV then (a.s.) ∃ unique A−mbl Y ≥ 0
s.t. E[X1A] = E[Y 1A] ∀A ∈ A is called the conditional expectation of
X given A and denoted by

Y = E[X|A]

Definition 121. For X ∈ L1(F) define

E[X|A] = E[X+|A]− E[X−|A]

Proposition 122. E[·|A] : L1(F)→ L1(A)

1) is linear and continuous

2) is monotone i.e. X > 0 a.s. =⇒ E[X|A] ≥ 0 a.s.

3) E[XZ|A] = ZE[X|A] ∀Z ∈ L∞(A)

Proof. 1) , 2)

X ∈ L1 =⇒ X+, X− ∈ L1 =⇒ E[E[X+|A]] = E[X+]

=⇒ E[X±|A] ∈ L1 =⇒ E[X|A] ∈ L1

Linearity follows from definition. Next show continuous

∥E[X|A]∥1 = E[|E[X|A]|] = E[E[X|A]+] + E[E[X|A]−]
= E[E[X+|A]] + E[E[X−|A]]
= E[X+] + E[X−]

= E[|X|] = ∥X∥1

hence
∥E[X1|A]−E[X2|U ]∥1 = ∥X1 −X2∥1

we showed it is Lipschitz continuous

3) For Z = 1B, B ∈ A. Claim

1BE[X|A] = E[X1B|A]

proof of claim: ∀A ∈ A

E[(X1B)1A] = E[X1A ∩B︸ ︷︷ ︸
∈A

] = E[1BE[X|A]1A]
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By linearity 3) is okay for Z simple.

Let Z ∈ L∞(A) by approximation theorem ∃ simple functions Zn ∈
L∞(A) s.t. Zn → Z a.s., we have

ZnE[X|A]→ ZE[X|A] in L1 by DCT

or
XZn → XZ in L1

by linearity
E[XZn|A]→ E[XZ|A] in L1

by uniqueness of limit

E[XZ|A] = ZE[X|A]

Definition 123. If Y is a rv we defineLecture 12
(2/27/14)

E[X|Y ] = E[X|σ(Y )]

Proposition 124. Let (An)n≥1 be a F-mbl, partition of Ω and let A =
σ(An≥1) then

E[X|A] =
∑
n≥1

E[X1An ]

P (An)
1An

Proof. Exercise.

Definition 125. Conditional Probability is defined as follows

P (B|A) := E[1B|A],B ∈ F

Note 126. If A = σ(A) = {∅,Ω, A,AC}

P (B|A) = P (B ∩A)
P (A)

1A +
P (B ∩AC)

P (AC)
1AC

Notices the common notion to express above, although not consistent
with measure theory is

P (B|A) = P (B ∩A)
P (A)
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Next we discuss various convergence theorems in conditional expectation
settings:

Theorem 127. (MCT)

0 ≤ Xn ↗ X a.s. =⇒ E[Xn|A]↗ E[X|A] a.s.

Theorem 128. (Faton)

Xn ≥ 0 a.s. =⇒ E[lim infXn|A] ≤ lim infE[Xn|A] a.s.

Theorem 129. (DCT)

Xn → X a.s. |Xn| ≤ Y ∈ L1 =⇒ E[Xn|A]→ E[X|A] a.s. in L1

also 1) continuous, 2) E[Xn|A] ≤ E[|Xn| |A] ≤ E[|Y | |A]

Remark 130. The statement ”Xn → X a.s. (Xn) UI =⇒ E(Xn|A) →
E[X|A] a.s.” is false, but it is true that

Xn → X in L1 =⇒ ∃ (Xnk
),E[Xnk

|A]→ E[X|A] a.s.

5.2 Filtration & Martingale

Theorem 131. (Conditional Jensen’s Inequality) If X ∈ L1, ψ convex

E[ψ(X)|A] ≥ ψ(E[X|A]) a.s.

Proof. Similar as for usual Jensen.

Corollary 132. E[·|A] is a contraction of Lp, p ∈ [1,∞]

∥E[X|A]∥p ≤ ∥X∥p

Proof. For p < ∞ apply Jensen to X → |X|p , for p = ∞ −∥X∥∞ ≤
X ≤ ∥X∥∞ a.s.

=⇒ −∥X∥∞ ≤ E[X|A] ≤ ∥X∥∞ a.s.

Example 133. Let X ∈ L1(F)

a) A is trivial i.e. A = {∅,Ω} =⇒ E[X|A] = E[X] a.s.
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Proof. E[X] is A−mbl,

E[E[X]1A] = E[X1A] ∀A ∈ A

b) if σ(X) and A are independent

E[X|A] = E[X] a.s.

Proof. Assume first that X is mbl

E[E[X]1A] = E[X]E[1A] = E[X1A]∀A ∈ A

The second equality is by Independence. This is true for E[X], E[Y ] ∈
L1 =⇒ E[X]E[Y ] = E[XY ] ∈ L1.

c) Tower property. Let A0 ⊆ A ⊆ F

E[E[X|A]A0] = E[X|A0] a.s.

Proof. E[X|A0] is A0−mbl, ∀A ∈ A

E[E[X|A0]1A] = E[E[X1A|A0]]

= E[X1A] = E[E[X|A]1A]

One can generalize An≥1 ↘ A∞

...E[...E[E[X|A1]|A2]] = E[X|A∞]

called backward most convergence
d) Let (Xk)k≥1 iid Xk ∈ L1 E[Xk] = 0

Sn = X1 + ...+Xn

Fn = σ(X1...Xn) = σ(S1...Sn)

then F1 ⊆ F2 ⊆ .... (called a filtration), and for all n

E[Sn+1|Fn] = Sn

called a martingale.
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Proof.

E[Sn+1|Fn] = E[Sn +Xn+1|F ]
= E[Sn|Fn] + E[Xn+1|Fn]

= Sn + E[Xn+1] = Sn

the third equality is due to the facts that Fn−mbl and Xn+1, Fn inde-
pendent.

5.3 Hilbert Projection

Theorem 134. If U ⊆ H is a closed linear subspace in a Hilbert space,Lecture 13
(3/6/14) ∃ ! orthogonal projection

π : H → H

Theorem 135. Let ϕ ̸= M ⊆ H be a closed, convex subset, for each
X ∈ H ∃ ! Y∗ ∈M s.t.

∥X − Y∗∥ = inf
Y ∈M

∥X − Y∗∥

i.e. Y∗ is the closest point in M .

Proof. (of theorem 135) Uniqueness: Let Y1,2 ∈M s.t.

∥Y1∥ = ∥Y2∥ = inf
Y |∈M

∥Y ∥ = D

M convex =⇒ Y1+Y2
2 ∈ M =⇒ ∥Y1 + Y2∥ ≥ 2D. We have the

parallelogram law

∥Y1 − Y2∥2 + ∥Y1 + Y2∥2 = 2(∥Y1∥2 + ∥Y2∥2)
= < Y1 − Y2, Y1 − Y2 > + < Y1 + Y2, Y1 + Y2 >

Hence

∥Y1 − Y2∥2 = 2 ∥Y1∥2+2 ∥Y2∥2−∥Y1 + Y2∥2 ≤ 2D2+2D2−(2D)2 = 0 =⇒ Y1 = Y2

Existence: D := infY |∈M ∥Y ∥ =⇒ ∃Yn ∈M s.t.

∥Yn∥ → D

using convexity + parallelogram inequality

∥Ym − Yn∥2 = 2(∥Ym∥2 + ∥Yn∥2)− ∥Ym + Yn∥2

≤ 2(∥Ym∥2 + ∥Yn∥2)− 4D2 → 0
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=⇒ (Yn) is Cauchy, H is complete, there is a limit Y∗ i.e.

∥Ym − Yn∥ → 0 =⇒ D = lim ∥Yn∥ = ∥Y∗∥

Now prove theorem 134.

Proof. Let M = U be a closed linear space, by theorem 135, given
X ∈ H define

π(X) = Y∗

as the closest point in H

1) it is clear that π(π(X)) = π(X)

2) it remains to show that Y∗ is characterized by

< X − Y∗, Y >= 0 ∀Y ∈ U

Let Y = 0 =⇒ < X − Y∗, Y >= 0, let Y ∈ U/{0} for any λ ∈ R

∥X − Y∗∥2 ≤ ∥X − (Y∗ + λY )∥2 =< X − (Y∗ + λY ), X − (Y∗ + λY ) >

= ∥X − Y∗∥2 − λ < X − Y∗, Y > −λ2 ∥Y ∥2

choose

λ =
< X − Y∗, Y >

∥Y ∥2
=⇒ < X − Y∗, Y >2≤ 0 =⇒ < X − Y∗, Y >= 0

Conversely let Ỹ ∈ U satisfy < X − Ỹ , Y >= 0, ∀Y ∈ U . Given Y ∈ U∥∥∥X − Ỹ ∥∥∥2 ≤
∥∥∥X − Ỹ ∥∥∥2 + ∥∥∥Ỹ − Y ∥∥∥2

=
∥∥∥(X − Ỹ ) + (Ỹ − Y )

∥∥∥2 ∵ Y − Ỹ ∈ U

= ∥X − Y ∥2

i.e. ∥∥∥X − Ỹ ∥∥∥ = inf
Y ∈U
∥X − Y ∥
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6 Measure Theory Part II

6.1 Change of Variable Formula

Theorem 136. Let (Ω,F , P ) be a probability space. (S, ρ) another
measure space and let X : Ω → S be mbl. Let µ = P ◦ X+ be the
distribution of X i.e.

µ(A) = P (X ∈ A) A ∈ ρ

and let h : (S, ρ)→ R be mbl
1) if h is non-negative, then

∀A ∈ ρ,
ˆ
X−1(Λ)

h(X(ω))dρ(ω) =

ˆ
A
h(s)µds (6.1)

2) h is µ−integrable iff h ◦ X is P−integrable, and in this cases (6.1)
holds.

Note 137. In part
E[h(X)] =

ˆ
hdµ

Proof. (Sketch) Let h = 1B, B ∈ ρ thenˆ
X−1(A)

h(X)dp = P (X ∈ A ∩B) = µ(A ∩B) =

ˆ
A
1Bdµ =

ˆ
A
hdµ

By linearity, the theorem holds for simple functions. Then the general
conclusion follows by approximation.

Example 138. Let X : Ω → R, h : R → R, assume that X has a pdf,
f i.e.

µ(A) =

ˆ
A
f(x)dx

then
E[h(X)] =

ˆ
R
h(x)f(x)dx

if h ≥ 0 or integrable.

Example 139. Let X : Ω→ Z , h : Z→ R, let Pn = P (X = n), n ∈ Z
then

E[h(X)] =
∑
n∈Z

h(n)Pn

if h ≥ 0 or integrable.
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Example 140. Let λ > 0X : Ω→ {0, 1, 2, ...} is Poisson (λ)−distribution
if

pk = P (X = k) = e−λλ
k

k!
, k = 0, 1, 2, ...

then

E[X] =
∑
k≥0

kpk =
∑
k≥0

ke−λλ
k

k!
= λe−λ

∑
k≥1

λk−1

(k − 1)!

= λe−λ
∑
k=0

λk

k!
= λ

also

E[X(X − 1)] =
∑
k≥2

k(k − 1)e−λλ
k

k!

= λ2e−λ
∑
k≥0

λk−2

(k − 2)!
= λ2

that is
E[X2] = λ2 + E[X] = λ2 + λ

Definition 141. Variant is defined as

var(X) = E[(X − E[X])2] = E[X2]− E[X]2

This is a way to remember Jensen. Apply Poisson

var(X) = λ2 + λ− λ2 = λ

6.2 Borel Cantelli Lemma

Standard application of this lemma: Monkey types binary text handout,Lecture 14
(3/13/14) will complete the text if we wait long enough.

Definition 142. Consider a sequence (An≥1) ⊆ F in a probability space
(Ω,F , P ),

{An infinitely open (i.o.)} = lim sup
n

An :=
∩
k≥1

(∪n≥kAn)

= {ω ∈ Ω : ω ∈ An for ∞ many n}

Remark 143. lim supn 1A = 1{An i.o.} = 1{lim supAn}
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Lemma 144. (1st Borel Cantelli Lemma) Let (An≥1) ⊆ F then∑
n≥1

P (An) <∞ =⇒ P (An, i.o.) = 0

Proof.

P (An i.o.) = P (
∩
k≥1

∪n≥kAn)

= lim
k
P (∪n≥kAn) ≤ lim

k

∑
n≥k

P (An)→ 0

the second equality is given by the continuity of measure.

The 2nd Borel Cantelli Lemma is partial converse of the 1st.

Lemma 145. (2nd Borel Cantelli Lemma) Let (An) ⊆ F be independent
then ∑

P (An) =∞ =⇒ P (An i.o.) = 1

Proof. Let 1 ≤ k ≤ m recall that (Ac
n≥1) are again independent, hence

0 ≤ 1− P (
m∪

n=k

An) = P (
m∩

n=k

Ac
n) =

m∏
n=k

P (Ac
n) =

m∏
n=k

(1− P (An))

Since 1−X ≤ e−X for 0 ≤ X ≤ 1, we get

1 ≥ P (
m∪

n=k

An) ≥ 1−
m∏

n=k

e−P (An) = 1− e

−

m∑
n=k

P (An)︸ ︷︷ ︸
→∞ as m→∞

Use continuity of measure

P (
∞∪
n=k

An) = lim
m
P (

∞∪
n=k

An) ≥ 1 for every k

=⇒
P (An i.o.) = P (

∩
k

∞∪
n=k

An) = 1
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Example 146. Let S = (a0, a1, ..., an) be a binary sequence of length
n. A monkey is given a 0/1 keyboard and he produces an iid sequence
(Xk≥1) with P (Xk = 1) = P (Xk = 0) = 1/2, then let

Ak = {Xk = a0, ..., Xk+n = an}

P (Ak i.o.) = 1

Proof. P (Ak) = 2−n+1 =⇒
∑
P (Ak) = ∞. The Ak are not indepen-

dent but (A(n+1)k)k≥1 are independent and∑
k

P (A(n+1)k) =∞

by the 2nd Borel Cantelli Lemma

P (Ak i.o.) = 1

6.3 Monotone Classes and Dynkin System

Definition 147. Let C be a non-empty collection of subsets of Ω.

1) C is a monotone class if it’s a closed under countable increasing unions
and countable decreasing interaction

2) C is a Π−system if it is stable under intersection

3) C is a λ−system if Ω ∈ C, C is closed under countable increasing
unions, and A,B ∈ C and if B ⊆ A, then A/B ⊆ C.

Note if (Ci∈I) are monotone classes, so is
∩

i∈I Ci, same for λ−system.
Hence given any family (Aj∈J) ∈ 2Ω, ∃ a minimal monotone class
m(Aj)j∈J and a minimal λ−system λ(Aj)j∈J containing (Aj)

Lemma 148. If C is a monotone class, it is a field.

Proof. Exercise.

Theorem 149. (Monotone Class theorem for Sets) Let C be a field,
then

m(C) = σ(C)
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Proof. Let M = m(C), since any field is a monotone class.

M ⊆ σ(C)

in light of the lemma, it remains to show that M is a field.
Fix G ∈ C and let

CG = {F ∈M : F/G,G/F ,F ∩G ∈M}

then ϕ ∈ CG, G ∈ CG and CG is a monotone class.
Moreover C ⊆ CG since C is a field =⇒ M ⊆ CG =⇒ M = CG. Now
let G ∈ M , the above shows G ∈ CF ∀F ∈ C which implies F ∈ CG by
symmetry. Again CG is a monotone class =⇒ M ⊆ CG =⇒ M = CG.
This holds for every G ∈M meaning that M is a field.

Lemma 150. If C is a Π−system and a λ−system, then C is a σ−field.

Proof. Exercise.

Theorem 151. (Dynkin) Let C be a Π− system, then λ(C) = σ(C).

Proof. Clearly λ(C) ⊆ σ(C), in view of the lemma it suffices to show that

L := λ(C) is a Π− system.

Let L1 = {A ∈ L : A ∩ B ∈ L for all B ∈ C}, then C ⊆ L1, since C is a
Π−system. Using that L is a λ−system, L1 is a λ−system =⇒ L = L1
by minimality.
Let L2 = {A ∈ L : A∩B ∈ L for all B ∈ L}, then L = L1 =⇒ C ⊆ L2.
Again L2 is a λ−system =⇒ L2 = L i.e. L is a Π−system.

Theorem 152. (Determination of Measures) Let C be a Π−system s.t.
σ(C) = F . If P, Q are finite measure on F and P = Q on C, then P = Q
on F .

Corollary 153. If P, Q are finite measure on (R,B(R)) s.t. P ([a, b]) =
Q([a, b]) ∀ a < b, then P = Q on B(R).

Example 154. (counterexamples)

Ω = {a, b, c, d}
C = {{a, b}, {b, c}, {c, d},Ω}

P (a) = P (b) = P (c) = P (d) =
1

4

Q(a) = Q(c) =
1

3
Q(b) = Q(d) =

1

6
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=⇒ P = Q on C, C generates 2Ω but P ̸= Q.

Proof. (of theorem 152) Recall if C is a Π−system, then λ(C) = σ(C).Lecture 15
(3/25/14) Consider L = {A ∈ F , P (A) = Q(A)}, then C ⊆ L. Moreover L is a

λ−system

1) P (Ω) = 1 = Q(Ω) so Ω ∈ L

2) Let A,B ∈ L,A ⊆ B

P (B/A) = P (B)− P (A) = Q(B)−Q(A) = Q(B/A)

hence B/A ∈ L

3) Let (An)n∈N ∈ L s.t. An ⊆ An+1

P (

∞∪
n=1

An) = lim
N→∞

P (

N∪
n=1

An) = lim
N→∞

P (AN )

= lim
N→∞

Q(AN ) = Q(

N∪
n=1

An)

So
∪N

n=1An ∈ L and L is a λ−system so λ(C) ⊆ L but

λ(C) = σ(C) = F

so F = L so ∀A ∈ F , P (A) = Q(A).

Theorem 155. Let I, J ∈ F be independent Π−system, then σ(I) and
σ(J) are independent.

Proof. Exercise.

Theorem 156. (Monotone Class Theorem for Functions) Let M be a
class of bounded function Ω → R which is closed under multiplication
(if f, g ∈ M, so is fg) Let M be a vector space of function Ω → R
containing M . If (fn) ∈ M with 0 ≤ f1 ≤ f2 ≤ ... s.t. F = limn→∞ fn
is bounded, then f ∈M .

Put this theorem in words: M contains all bounded σ(M) - mbl func-
tions.

Proof. Exercise.
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6.4 Product Measure

Kernels and Fubinis Theorem

Definition 157. Let (S1, ρ1) and (S2, ρ2) be measurable spaces. A
(stochastic) kernel K(X1, dX2) from (S1, ρ1) and (S2, ρ2) is a mapping

K : S1 × S2 → [0, 1]

s.t. ∀X1 ∈ S1 K(X1, ·) is a probability measure, and ∀A2 ∈ S2, the
function K(X1, A2) is ρ1−measurable.

Probability interpretation: S1 and S2 are states of a random system at
time 1 and 2. K(X1, ·) is the probability of the state of the system at
time 2 given that the system was in state X1 at time 1.

Example 158. ∀X1 ∈ S1, let K(X1, ·) = P2 fixed probability measure
on S2, i.e. no dependence on X1.

Example 159. Suppose S1 = S2 = S which is a finite set {o1, ..., om}
and ρ1 = ρ2 = P (S). Any probability measure on S is determined by
P ({o1}), ..., P ({om}). Then K is given by a matrix

K̃ = (K̃ij)1≤i,j≤n

where K̃ij = K(oi, {oj}), K̃ is stochastic matrix, namely

K̃ij ≥ 0 and
n∑

j=1

K(oi, {oj}) = 1 ∀ oi ∈ S

So K̃ij is the probability to jump from oi to oj .

Let Ω = S1 × S2 with σ−algebra σ(ρ1 × ρ2). Let P be a probability
on (S1, ρ1) and let K be a Kernel from (S1, ρ1) to (S2, ρ2), we want to
construct a “product” measure P = P1 ×K.

Discrete Case

Let Si be a countable sets and ρi = P (Si) then Ω is countable and P is
given by the weights

P ({X1, X2}) = P ({X1})K(X1, {X2})
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then ∀ f : Ω→ R+

Ep(f) =

ˆ
Ω
fdp =

∑
X1,X2

f(X1, X2)P ({(X1, X2)})

=
∑
X1

∑
X2

f(X1, X2)K(X1, {X2})P1({X1})

=

ˆ
S1

(ˆ
S2

f(X1, X2)K(X1, X2)

)
P1(dX1)

General Case

On Ω = S1×S2 we use the product σ−field F : ρ1×ρ2 = σ({A1×A2|Ai ∈
ρi}). This is the σ−algebra generated by “rectangle” A1 ×A2.
Theorem 160. (Fubini) ∃ ! probability measure P on (Ω,F) = (S1 ×
S2, ρ1 × ρ2) s.t.ˆ

Ω
fdP =

ˆ
S1

(ˆ
S2

f(X1, X2)K(X1, dX2)

)
P (dX1) (6.2)

∀ f ∈ L+0 (Ω,F). In particular

P (A) =

ˆ
K(X1, AX1)P1(dX1) ∀A ∈ F

where AX1 = {X2 ∈ S2|(X1, X2) ∈ A} is the X1−section of A. In
particular if A = A1 ×A2,

P (A) =

ˆ
A1

K(X,A2)P1(dX1)

Remark 161. 1) (6.2) also holds for f ∈ L1(Ω,F , P )
2) this can be extended to σ−finite- measure.

3) Special case if K(X1, ·) = p2 ∀X1, we have

P = P1 × P2

a product of two measures. Then

(P1 × P2)(A1 ×A2) = P1(A1)P2(A2)

and we get the classical Fubini theoremˆ
Ω
fd(P1 × P2) =

ˆ (ˆ
fdP1

)
dP2 =

ˆ (ˆ
fdP2

)
dP1

∀ f ∈ L0+ or f ∈ L1(P ).
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Lemma 162. If f : Ω→ R̄ is ρ1×ρ2−mbl and X1 ∈ S1 then the sectionLecture 16
(3/27/14) fX1(·) := f(X1, ·) : (S2, ρ2)→ R̄

is mbl.

Proof. The mapping

fX1(·) : X2 7→ (X1, X2)

from (S2, ρ2) to (S1 × S2, ρ1 × ρ2) is mbl.

ψ−1
X1

(A1 ×A2) =

{
∅ X1 /∈ A1

A2 X1 ∈ A1

then the composite FX1 = f ◦ ψX1 is mbl.

Corollary 163. A ∈ ρ1 × ρ2 =⇒ AX1 ∈ ρ2 ∀X1 ∈ S1.

Proof. (of theorem 160 Fubini) 1) Uniqueness: P is unique because the
rectangle A1 ×A2 ∈ ρ1 × ρ2 generates ρ1 × ρ2 and form a Π−system.

2) P (A) is well-defined. By the corollary AX1 is mbl. So

P (A =

ˆ
K(X1, AX1)P1(dX1)

make sense. P is a probability measure, so

i)
P (Ω) =

ˆ
K(X1, ρ2)P1(dX1) = 1

ii) (An)n≥1 ⊆ F adjoin =⇒ (∪nAn)X1 = ∪nAn
X1

and

P (
∪
n

An) =

ˆ
K(X1,

∪
n

An
X1
P1)(dX1)

=
∑
n

ˆ
K(X1, A

n
X1

)P1(dX1) =
∑
n

P (An)

=⇒ P is a σ−mbl.

3) Let F ∈ L0+ Claim:

X1 7→
ˆ
f(X1, X2)K(X1, dX2)
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is ρ1−mbl.

proof of claim: By approximation and linearity, it suffices to consider

F = 1A, A ∈ F

then ˆ
f(X1, X2)K(X1, dX2) = K(X1, AX1)

let
C = {A ∈ F : X1 7→ K(X1, AX1) is mbl}

If A = A1×A2 ∈ ρ1× ρ2 then K(X1, AX1) = 1A1(X1)K(X1, A2) is mbl,
so A ∈ C, also C is a λ−system. By Dynkin C = F =⇒ claim is proved.

4) The formula (6.2) is true by definition for f = 1A, A ∈ F . By linearity
and approximation, it holds for f ∈ L0+.

Next we study the “converse” to Fubini:

Theorem 164. (decomposition of measure) Let P be any probability
measure on (Ω,F) = {S1 × S2, ρ1 × ρ2}

P1(A1) := P (A1 × S2), A1 ∈ ρ1

If S2 is a complete metric space and ρ2 = B(S2) then there exists a
Kernel K s.t.

P = P1 ×K

Proof. Exercise.

We will show how to construct K in two special cases:

i) Discrete Case: If S1, S2 are countable, set

K(X1, A2) =
P{(X1, X2) : X2 ∈ A}
P{(X1, X2) : X1 ∈ S2)}

If the denomination is 0, let K be any probability on ρ2.

ii) Conditional density: suppose we are given (σ−finite) measure m1,
m2 on S1, S2 and P admits a density wrt m1 ×m2

P (A) =

¨
f(X1X2)m1(dX1)m2(dX2)
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Note that the marginal P1 has a density given by

f1(X1) =

ˆ
f(X1, X2)m2(dX2)

Set

K(X1, A2) =

{
f(X1,X2)
f1(X1)

m1(dX2) f1(X1) ̸= 0

any prob on ρ2 f1(X1) = 0

then P = P1 ×K.

One can call

Definition 165.
f(X2|X1) :=

f(X1, X2)

f1(X1)

conditional density.

6.5 Infinite Product

It has applications to random walk and quantum field theory.

For i = 0, 1, 2, ... let (Si, ρi) be a mbl space and let

(Sn, ρn) = (S0 × ...× Sn, ρ0 × ...× ρn)

Given a probability P0 on (S0, ρ0), ∀n ≥ 1 we define a kernel Kn from
(Sn−1, ρn−1) to (Sn, ρn). This gives a discrete time dynamic system with
state space Si at time i, P0 initial distribution,

Kn(X0, ..., Xn−1, An)

the probability of being in An at time n given that X0, ..., Xn−1 were
the states at t = 0, 1, ..., n− 1.

Fubini should have the following form: for each n ≥ 1, we have a prob-
ability Pn on (Sn, ρn)

P 0 : = P0

pn = Pn−1 ×Kn = P0 ×K1 × ...×Kn, n ≥ 1

If f ∈ L0+(Sn, ρn), then
ˆ
fdPn =

ˆ
P0(dX0)

ˆ
K1(X0, dX1)...

ˆ
Kn ((X0, ..., Xn−1), dXn) f(X0, ..., Xn)
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Let Ω =
∏∞

i=0 Si = {w = (X0, X1, ...), Xi ∈ Si}, this is the space of
possible “trajectories”.

Let Xn : Ω→ Sn be the canonical projection i.e.

Xn(w) = Xn

if w = (X0, X1, ...). Let Fn = σ(X0, X1, ..., Xn) “event observable up to
time n” and

F = σ(X0, X1, ...) = σ(
∪
n≥0

Fn)

We want to construct a probability P on (Ω,F) that behaves like Pn

up to time n.

More precisely: each A ∈ Fn is of the form

A = An × Sn+1 × Sn+2 × ...

for some An ∈ ρn, and we want

P (An × Sn+1 × ...) = Pn(An)

∀An ∈ ρn, n ≥ 0.

Theorem 166. (Ionescu-Tulcea) ∃ a unique probability P on (Ω,F)Lecture 17
(3/31/14) s.t.

P (An × Sn+1 × Sn+2 × ...) = Pn(An) (6.3)

∀An ∈ ρn, n ≥ 0 and more generally
ˆ
f(X0, X1, ..., Xn)dP =

ˆ
P0(dX0)K1(X0, dX1)...Kn(X0...Xn−1, dXn)f(X0, ..., Xn)

for all f ∈ L0+(Sn, ρn).

Proof. (Sketch) Uniqueness: P is determined by (6.3) on finite rectan-
gles, they form a π−system generating F =⇒ P is unique.

Existence: (6.3) defines P on the field∪
n≥0

Fn = ξ

One checks that P is σ−additive on ξ and uses the Caratheodory theo-
rem.
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Definition 167. The stochastic process (Xn≥0) on (Ω,F , P ) has initial
distribution P0 and transition law (or kernel)

Kn(X0, ..., Xn−1, An) = P [Xn ∈ An|X0 = x0, ..., Xn−1 = xn−1]

if Si is countable, one can define the RHS directly and show this.

If Kn(X0, ..., Xn−1, ·) = Kn(Xn−1, ·), i.e. Kn depends only on the “cur-
rent” state Xn−1, X is a Markov process.

If furthermore (Sn, ρn) = (S, ρ) and Kn = K, we say that X is time-
homogeneous.

Proposition 168. Let Pn be the n−th marginal i.e.

Pn(A) := P (Xn ∈ A), A ∈ ρn

then (Xn≥0) are independent (under P ) iff

P =
∏
n≥0

Pn

i.e. Kn = Pn ∀n ≥ 1.

Proof. Let P̃ =
∏

n≥0 Pn. (Xn) are independent iff

P (X0 ∈ A0, ..., Xn ∈ An) =

n∏
i=0

Pi(Xi ∈ Ai) = P̃ (X0 ∈ A0, ..., Xn ∈ An)

iff (because of rectangles form π−system)

P = P̃

Example 169. Let Sn = {±1} ∀n ≥ 0, S0 = {0},Pn({1}) = p =
1− Pn({−1})

Let Ω = πSn, P = πPn =⇒ (Xn≥1) are iid P (X0 = ±1) =

{
p

1− p
,

i.e. Sn = X0 + ...+Xn is a simple random walk.
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6.6 Caratheodory Extension and Existence of
Lebesgue-Stieltjes Measure

Theorem 170. (Caratheodory) Let ξ be a field of subsets of Ω and let
ν : ξ → [0,∞] satisfy
1) ν(ϕ) = 0

2) ν is σ−finite
3) ν is σ additive on ξ if (An≥1) ⊆ ξ are disjoint and

∪
n≥1An ∈ ξ, then

i)
ν(
∪
n

An) =
∑
n

ν(An)

ii) ν extents uniquely to a σ−finite measure µ on σ(ξ). Moreover

µ(B) = inf{
∑
n

ν(An), An ∈ ξ,B ∈
∪
n

An} (6.4)

B ∈ σ(ξ).

Proof. uniqueness: π−system; existence: one checks that (6.4) defines a
measure.

Example 171. Let F : R→ R be non-decreasing and right-continuous,
define

ξ = {
n∪

j=1

(aj , bj ] : −∞ ≤ aj ≤ bj ≤ ∞, n ∈ N}

Lemma 172. Let A ∈ ξ then A is a union of disjoint intervals (aj , bj ],
1 ≤ j ≤ n and

ν(A) :=

n∑
j=1

F (bj)− F (aj)

defines a σ−finite, σ−additive function on ξ.

Corollary 173. (Lebesgue-Stielties) Let F : R → R be non-decreasing
and right continuous, there exists a unique measure µ on (R,B(R)) s.t.

µ((a, b]) = F (a)− F (b)

∀ a < b. If F (x) = x this is the Lebesgue measure.

Proof. Note that ξ is a field and σ(ξ) = B(R) in view of the lemma 172,
we can apply the Caratheodory theorem.
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Now we prove lemma 172.

Proof. 1) ν is well-defined: ν(A) does not depend on the choice of the
disjoint intervals.
2) σ−finite: R = ∪n(−n, n] and ν(−n, n] = F (n)− F (−n) ∈ R

3) claim: if −∞ < a < b < ∞ and (a, b] = ∪n≥1(an, bm] is a countable
disjoint union, then

ν(a, b] =
∑
n≥1

ν(an, bn]

proof of claim: finite additive is clear;

ν(a, b] ≥
∑
n≥1

ν(an, bn]

follows from definition. Let 0 < ξ < b− a, choose b̃n > bn s.t.

F (b̃n)− F (bn) ≤ ξ2−n

which is possible because F is right continuous. Then ∪n(an, b̃n) form a
covering of [a+ϵ, b), which is compact, so ∃ a finite sub cover (an1 , b̃n1)...(ane , b̃ne),
so

ν(a+ ϵ, b] = F (b)− F (a+ ϵ) ≤
e∑

j=1

ν(anj , b̃nj ]

≤ ϵ+
e∑

j=1

ν(anj , bnj ]

letting ϵ→ 0, using right continuous,

ν(a, b] ≤
e∑

j=1

ν(anj , bnj ]

4) ν is σ−additive on ξ: reduces to 3).

7 Limit Theorems

7.1 Convergence in Distribution

Definition 174. Let µn, n ≥ 0 be probability on R, then µn convergesLecture 18
(4/6/14)
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weakly to µ0 (denoted µn ⇒ µ0) if
ˆ
gdµn −→

n→∞

ˆ
gdµ0

∀ g ∈ Cb(R), bounded continuous function R → R. Also called vague
convergence.

Definition 175. Let (Ωn,F , Pn), n ≥ 0 be probability spaces. Xn :

Ωn → R r.v. then Xn converges to X0 in distribution (or in lawXn
L−→

X0, Xn
D−→ X0, Xn =⇒ X0) if the corresponding distribution con-

verges weakly i.e.

EPn [g(Xn)]︸ ︷︷ ︸´
gµn

−→ EP0 [g(X0)]︸ ︷︷ ︸´
gµ0

, ∀ g ∈ Cb(R)

Theorem 176. Let Xn, n ≥ 0 be rv’s on (Ω,F , P ) then

Xn
P−→ X0

converges in measure implies

Xn
L−→ X0

Proof. Let Xn
P−→ X0, then

g(Xn)
P−→ g(X0)

for all g ∈ C(R). If g is bounded, {g(Xn)} is UI =⇒

EP [g(Xn)]→ EP [g(X0)]

Theorem 177. Let µn, µ be probabilities on R and Fn(X) = µn((−∞, X]),
F (X) = µ((−∞, X]). The following are equivalent:

1) µn =⇒ µ

2)
´
gdµn →

´
gdµ, ∀ g ∈ C∞

b (R)

3) Fn(X)→ F (X), ∀X ∈ C = {X ∈ R : F is continuous at X}
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Proof. 1) =⇒ 2) clear
2) =⇒ 3) let X ∈ C, δ > 0, let h ∈ C∞

b be s.t. 0 ≤ h ≤ 1, h = 1 on
(−∞, X], h = 0 on [X + δ,+∞).
Then Fn(X) ≤

´
hdµ ≤ Fn(X + δ), F (X) ≤

´
hdµ ≤ F (X + δ), then

lim sup
n→∞

Fn(X) ≤ lim
ˆ
hdµn

2)
=⇒

ˆ
hdµ ≤ F (X + δ)

let δ ↓0=⇒ lim supFn(X) ≤ F (X) ∵ F is RC. Also

Fn(X − δ) ≤
ˆ
h(·+ δ)dµn ≤ Fn(X)

F (X − δ) ≤
ˆ
h(·+ δ)dµn ≤ F (X)

=⇒ lim infn→∞ Fn(X) ≥ lim
´
h(·+ δ)dµn =

´
h(·+ δ)dµ ≥ F (X − δ)

let δ ↓0=⇒ lim infFn(X) ≥ F (X)

∵ X ∈ C

3) =⇒ 2) Note: F is non decreasing =⇒ R/C is countable =⇒ C ⊆
R is dense. Let ϵ > 0, by 3) there exists a, b ∈ C s.t.

µ([a, b]) > 1− ϵ

and
µn([a, b]) > 1− ϵ ∀n

Let g ∈ Cb(R), since g is uniform continuous on [a, b], ∃ δ > 0 s.t.

|X − Y | < δ =⇒ |g(X)− g(Y )| < ϵ

∀X,Y ∈ [a, b]. Fix a = X0 < X1 < ... < Xm = b, |Xi −Xi−1| < δ,
Xi ∈ C, let

ḡ =

m∑
i=1

g(Xi−1)1(Xi−1,Xi]

then

|g(X)− ḡ(X)| ≤

{
ϵ if X ∈ [a, b]

∥g∥∞ else
As ˆ

ḡdµn =

n∑
i=1

g(Xi−1)(Fn(Xi)− F (Xi−1)),
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and Xi ∈ C, we have ˆ
ḡdµn →

ˆ
ḡdµ

therefore,∣∣∣∣ˆ gdµn −
ˆ
gdµ

∣∣∣∣ ≤ ∣∣∣∣ˆ gdµn − ḡdµn
∣∣∣∣+ ∣∣∣∣ˆ ḡdµn −

ˆ
ḡdµ

∣∣∣∣+ ∣∣∣∣ˆ ḡdµ−
ˆ
gdµ

∣∣∣∣
≤ ϵ(3 + 2 ∥g∥∞) for n large

Remark 178. µn =⇒ µ does not imply

µn(A)→ µ(A)

for every A ∈ B(R) not even for A = (−∞, n]. For example

µn = N (0,
1

n
)

µ = δ0, then

µn =⇒ µ but 0 = µn({0}) ̸−→ µ({0}) = 1

but it is true that
µn(A)→ µ(A)

for all A ∈ B(R) s.t. µ(∂A) = 0, where ∂A = Ā/Å.

Also recognize that
Xn

L−→ X

doesn’t imply
Xn

P−→ X

or even
Xn

a.s.−→ X

However this changes if only the distributions are given and the r.v.’s
can be chose.
Theorem 179. (Skovohod) Let Fn, n ≥ 0 be cdf’s s.t.

Fn(X)→ F0(X)

∀X ∈ C = {X : F0 continuous at X}, there exists a probability space
(Ω,F , P ) and r.v.’s Xn : Ω→ R s.t.

Fn(·) = P (Xn ≥ ·)

and
Xn → X0 a.s.
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Proof. Let (Ω,F) = ([0, 1],B[0, 1]) and P =Lebesgue measure. Let

X+
n (w) = inf{X : Fn(X) > w}

X−
n (w) = inf{X : Fn(X) ≥ w}

then X+
n ≥ X−

n and Fn(·) = P (X±
n ≤ ·), then

X+
n = X−

n P − a.s.

Let w ∈ Ω, X ∈ (X+
0 (w),∞) ∩ C, then

X > X+
0 (w) =⇒ F0(X) > w =⇒ Fn(X) > w

∀n large, then
X ≥ X+

n (w) ∀n large

then
lim supX+

n (w) ≤ X0

let
X ↓ X+

0 (w) =⇒ lim supX+
n (w) ≤ X+

0 (w)

Similarly
lim infX−

n (w) ≥ X−
0 (w)

Since X+
n = X−

n a.s., we have

X+
n → X+

0 a.s.

7.2 Law of Large Numbers

Let (Xn)n≥1 be integrable rv’s on (Ω,F , P ) . Assume thatLecture 19
(4/8/14)

E[Xn] = µ ∈ R ∀n

and let Sn = X1 + ...+Xn.

Definition 180. The weak law of large numbers (week LLN) holds for
(Xn) if

Sn
n

P−→ µ

as n→∞.
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Definition 181. The strong law of large numbers (strong LLN) holds
for (Xn) if

Sn
n

a.s.−→ µ

as n→∞.

The basic idea is sample average→ expectation. This needs integrability
and independent assumption.

Example 182. Let (Xn) be iid with density

P (X) =
1

π

1

1 +Xn

Cauchy distribution. Then one can check by convolution that Sn
n has

the same distribution for all n. Hence

E[|Xn|] =∞

Theorem 183. (A weak LLN) Let (Xn)n≥1 be integrable r.v. with
E[Xn] = µ ∀n

var(Xn) = E[(Xn − E[Xn])
2] = σ2 <∞

cov(Xi, Xj) = E[(Xi − E(Xi))(Xj − E(Xj))] ≤ R(|i− j|)

where R : N→ R with R(n)→ 0 as n→∞.Then

Sn
n

P−→ µ

for Sn = X1 + ...+Xn.

Proof. WLOG µ = 0 By Chebyshev’s inequality

P (

∣∣∣∣Snn
∣∣∣∣ > ϵ) ≤

E(Sn
n )2

ϵ2
=
E(S2

n)

n2ϵ2
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hence

E[S2
n] = E[(X1 + ...Xn)

2] =
∑

1≤i,j≤n

E[XiXj ]

=

n∑
i=1

E[X2
i ] + 2

∑
1≤i≤j≤n

E[XiXj ]

≤ nσ2 + 2
n∑

i=1

n∑
j=i+1

R(j − i)

= nσ2 +

n−1∑
k=1

(n− k)R(k)

≤ nσ2 + 2n

n∑
k=1

|R(k)|

Note

|R(k)| → 0 =⇒ 1

n

n−1∑
k=1

|R(k)| → 0

hence

P (

∣∣∣∣Snn
∣∣∣∣ > ϵ) ≤ nσ2

n2ϵ2
+

2n

nϵ2
1

n

n−1∑
k=1

|R(k)| → 0 + 0 = 0

Lemma 184. Xk ∈ R+, Xk → 0, then

1

n

n−1∑
k=1

Xk → 0

Proof.

X1 + ...+Xn

n
=
X1 + ...+XN

n
+
XN+1 + ...+Xn

n

Theorem 185. (Strong LLN) Let (Xk)k≥1be pairwise independent and
identically distributed rv’s with E[|Xk|] < ∞. Let µ = E[X1] and S1 =
X1 + ...+Xn, then

Sn
n

a.s.−→ µ
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We use Etemadi’s proof.

Lemma 186. It is sufficient to prove that

Tn
n
→ µ a.s.

where Tn = Y1 + ...+ Yn, Yk = Xk1|Xk|≤k.

Proof. ∑
k≥1

P ( |Xk| > k︸ ︷︷ ︸
={Xk ̸=Yk}

) ≤
ˆ ∞

0
P (|X1| > t) = E[|X1|] <∞

=⇒ P (Xk ̸= Yk i.o.) = 0

=⇒ sup
n
|Sn − Tn| <∞ a.s.

=⇒
{

lim sup Sn
n = lim sup Tn

n

lim inf Sn
n = lim inf Tn

n

Lemma 187. ∑
k≥1

E[Y 2
k ]

k2
≤ 4E[|X1|] <∞

Proof.

E[Y 2
k ] =

ˆ ∞

0
2yP (|Yk| > y)dy ≤

ˆ k

0
2yP (|X1| > y)dy

implies ∑
k≥1

E[Y 2
k ]

k2
≤

∑
k≥1

1

k2

ˆ ∞

0
1{y≤k}2yP (|X1| > y)dy

=

ˆ ∞

0
(
∑
k≥1

k−21y<k)2yP (|X1| > y)dy (7.1)

Claim: 2y
∑

k>y k
−2 ≤ 4 ∀ y ≥ 0.

Proof of claim: Let m ≥ 2 then∑
k≥m

k−2 ≤
ˆ ∞

m−1
x−2dx =

1
m− 1
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If Y ≥ 1, sum starts with k = ⌊Y ⌋+ 1 ≥ 2,

=⇒ 2Y
∑
k>Y

k−2 ≤ 2Y

⌊Y ⌋
≤ 4

If 0 < Y < 1,

2Y
∑
k>Y

k−2 ≤ 2(1 +

∞∑
k=2

k−2) ≤ 4

proves the claim. Together with (7.1)

∑ E[Y 2
k ]

k2
≤ 4

ˆ ∞

0
P (|X1| > Y )dY = 4E[|X1|] <∞

Now we prove strong LLN

Proof. By treating separately X+
k , X

−
k we may assume that Xk ≥ 0, we

first prove the result along a sub sequence kn = ⌊αn⌋ , where α > 1 is a
fixed constraint.∑
n≥1

P (|Tkn − E[Tkn ]| > ϵkn) ≤ ϵ−2
∑
n≥1

var(Tkn)
k2n

= ϵ2
∑
n≥1

1

k2n

kn∑
m=1

var(Ym) ∵pairwise indep

= ϵ2
∑
m≥1

var(Ym)

kn∑
n∈kn≥m

1

k2n
∵Fubini

also

⌊αn⌋ ≥ αn

2
=⇒

∑
n∈kn≥m

⌊αn⌋−2 ≤ 4
∑

n∈kn≥m

α−2n ≤ 4(1− α−2)−1m−2

so ∑
n≥1

P (|Tkn − E[Tkn ]| > ϵkn) ≤ 4(1− α−2)−1ϵ
∑
m≥1

E[Y 2
m]

m2
<∞

then
P (
|Tkn − E[Tkn ]|

kn
> ϵ i.o.) = 0
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i.e.
|Tkn − E[Tkn ]|

kn
→ 0 a.s.

Since E[Yk]→ E[X1] = µ (DCT), this shows

Tkn
kn
→ µ a.s.

To handle the indices between the kn’s , sandwich if kn ≤ m ≤ kn+1,
then

Tkn
kn+1

≤ Tm
m
≤
Tkn+1

kn

Since kn = ⌊αn⌋ , we have
kn+1

kn
→ α

and
1

α
µ ≤ lim inf

m→∞

Tm
m
≤ lim sup

m→∞

Tm
m
≤ αµ

Now let
α ↓ 1 =⇒ lim Tm

m
= µ

Now the theorem of strong LLN follows from lemma 186.

LLN tells usLecture 20
(4/10/14)

Sn
n

a.s.−→ µ = E[X1]

but how far does Sn deviate from nµ (fluctuation) ?

Theorem 188. (Law of the Iterated Log) Let (Xn) iid, Xn ∈ L2, let
µ = E[X1] σ

2 = var(X1), then

lim sup Sn − nµ√
2σ2nln(lnn)

= +1

lim inf Sn − nµ√
2σ2nln(lnn)

= −1

Proof. Exercise.
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7.3 Central Limit Theorem

Recall that X ∼ N (µ, σ2) (µ ∈ R, σ > 0) If

P (X ≤ x) = 1√
2πσ2

ˆ x

−∞
e−

(y−µ)2

2σ2 dy

and then µ = E[X], σ2 = var(X). Let Φ be the cdf of N (0, 1) i.e.

Φ =
1√
2π

ˆ x

−∞
e−

y2

2 dy

Note that Φ is continuous.

Theorem 189. (Central Limit Theorem) Let (Xi)i≥1 be iid with E[Xi] =
µ and var(Xi) = σ2 ∈ (0,∞). For Sn = X1 + ...+Xn,

Sn − nµ
σ
√
n

=⇒ N (0, 1)

or equivalent
P (
Sn − nµ
σ
√
n
≤ x)→ Φ(x)∀x ∈ R

Theorem 190. (Lindeberg) Let Xn,i, 1 ≤ i ≤ n, n ≥ 1 be r.v. and

1) Xn,1,..., Xn,n are independent ∀n

2) E[Xn,i] = 0, E[X2
n,i] = σ2n,i <∞,

∑n
i=1 σ

2
n,i = 1 ∀n

3) limn→∞
∑n

i=1E[X2
n,i1{|Xn,i|>ϵ}] = 0, ∀ ϵ > 0

Then Sn = Xn,1 + ...+Xn,n =⇒ N (0, 1)

Note: the iid assumption from the CLT is relaxed here.
Remark 191. Each of the contribution Xn,i is small:

max
1≤i≤n

σ2n,i ≤ max(ϵ2 +E[X2
n,i1{|Xn,i|>ϵ}])

≤ ϵ2 +

n∑
i=1

E[X2
n,i1{|Xn,i|>ϵ}]︸ ︷︷ ︸

→0 by 3)

We first prove Lindeberg =⇒ CLT
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Proof. Let Xn,i =
Xi−µ
σ
√
n
, then Xn,1...Xn,n are independent. E(Xn,i) = 0,

σ2n,i = E[X2
n,i] =

1

n
→

n∑
i=1

σ2n,i = 1

Fix ϵ > 0,
n∑

i=1

E[X2
n,i1{|Xn,i|>ϵ}] =

1

σ2
E[(X1 − µ)21|X1−µ|>ϵσ

√
n]

DCT−→ 0

Now prove Lindeberg

Proof. Let f be a bounded smooth function with f ′, f ′′, f ′′′ bounded.
Choose (possible after enlarging Ω)

Yn,i ∼ N (0, σ2n,i)

s.t.
Yn,1...Yn,n Xn,1...Xn,n

are independent ∀n. Hence it suffices to show that

E[f(
n∑

i=1

Xn,i)]−E[f(
n∑

i=1

Yn,i)]→ 0

So the idea is to replace Xn,i by Yn,i, one after the other. Let

Zn,i = Xn,1 + ...+Xn,j−1 + Yn,i+1 + ...+ Yn,n

applying Taylor

f(Zn,i +Xn,i)− f(Zn,i + Yn,i) = f ′(Zn,i)(Xn,i − Yn,i)

+
1

2
f ′′(Zn,i)(X

2
n,i − Y 2

n,i) +R(Zn,i, Xn,i)

+R(Zn,i, Yn,i)

implies

|R(Z,X)| ≤
∣∣∣∣16X3f ′′′(Z + θX)

∣∣∣∣ ≤ const |X|2

≤
∣∣∣∣12X2(f ′′(Z + θX)− f ′′(Z))

∣∣∣∣ ≤ const |X|2

≤ const(ϵX2 +X21|X|>ϵ)
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Since Zn,i is independent of Xn,i and Yn,i, we get

|E[f(Zn,i +Xn,i)]− E[f(Zn,i + Yn,i)]| ≤
∣∣E[f ′(Zn,i)] · E[n,i−Yn,i]

∣∣
+
1

2

∣∣E[f ′′(Zn,i)] ·
(
E[X2

n,i]− E[Y 2
n,i]
)∣∣

+E[|R(Zn,i, Xn,i)|] + E[|R(Zn,i, Yn,i)|]
≤ const(ϵσ2n,i + E[X2

n,i1|Xn,i|>ϵ] + E[|Yn,i|3])

Thus ∀ ϵ > 0∣∣∣∣∣E[f(
n∑

i=1

Xn,i)− f(
n∑

i=1

Yn,i)]

∣∣∣∣∣ = |E[f(Zn,n +Xn,n)− f(Zn,1 + Yn,1)]|

≤

∣∣∣∣∣
n∑

i=1

E[f(Zn,i +Xn,i)− f(Zn,i + Yn,i)]

∣∣∣∣∣
≤ const(ϵ+

∑
i

E[X2
n,i1|Xn,i|>ϵ] +

∑
i

E[|Yn,i|3])

≤ const(ϵ+ ϵ+ ϵ) for large n

Using assumption 3) in the theorem
n∑

i=1

E[|Yn,i|3] =
n∑

i=1

σ3n,i

√
8

π
≤ (max

i
σn,i)︸ ︷︷ ︸

→0 by rank

(
∑
i

σ2n,i)︸ ︷︷ ︸
1

√
8

π
→ 0

In the CLT, how fast doesLecture 21
(4/14/14)

P (
Sn − nµ√

nσ
≤ X)

converge to Φ(X)? The typical rate is
√
n.

Theorem 192. (Barry-Esseen) Let Xi be iid, µ = E[Xi], σ2 = var(Xi) ∈
(0,∞)

Sn = X1 + ...+Xn

If E[|Xi|3] <∞, then

sup
X∈R

∣∣∣∣P (Sn − nµ√
nσ

≤ X)− Φ(X)

∣∣∣∣ ≤ E[|X1|3]
σ3
√
n
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Proof. Skipped.

Example 193. (rounding error) Let X1, ..., Xn, ... iid uniformly dis-
tributed in [−1

2 ,
1
2 ], (that of Xn as rounding error) Then since µ = 0,

σ2 = 1
12

P (a ≤ Sn ≤ b) = P (a

√
12

n
≤ Sn − nµ√

nδ
≤ b
√

12

n
)

n lareg
≈ Φ(b

√
12

n
)− Φ(a

√
12

n
)

E.g. P (|S100| ≤ 5) ≈ Φ(
√
3) − Φ(−

√
3) ≈ 0.917. In probability of

|error| ≤ 5 is about 0.9, comparing to worst error is n/2 = 50.

Example 194. (Asymptotic of the median) Let F be a cdf. The median
of F is m = F−1(12) right inverse. Let X1, X2... be iid ∼ F and median
m = 0. Assume that F ′(0) exists and F ′(0) > 0.
Let Zn be the empirical median

Zn = X(k)

for k =
⌊
n
2 + 1

⌋
, whereX(k)(w) is the k−th smallest value ofX1(w), ...,Xn(w),

then √
nZn =⇒ N (0,

1

4F ′(0)2
)

Proof. We shall use Lindeberg’s theorem. Fix X ∈ R. Let Yn,i =
1{Xi>

X√
n
}. Then

√
nZn ≤ Xn ⇐⇒ X(k) ≤

X√
n
⇐⇒

n∑
i=1

Yn,i ≤ n− k

with Pn = 1− F ( X√
n
), we have

E[Yn,i] = Pn, var(Yn,i) = Pn(1− Pn)

Standardize to use Lindeberg

Xn,i =
Yn,i − Pn√
nPn(1− Pn)

Since
√
nZn ≤ X ⇐⇒ Sn =

n∑
i=1

Xn,i ≤ an =
n− k − nPn√
nPn(1− Pn)
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As n→∞, and substituting Y = 1/
√
n

n− k − nPn√
nPn(1− Pn)

∼
n− n

2 − nPn√
nPn(1− Pn)

=
−n

2 − nF (
X√
n
)√

n(1− F ( X√
n
))F ( X√

n
)

=
F (XY )− 1

2

Y
√

1− F (XY )
√
F (XY )

L′Hopital→ XF ′(0)√
1− F (0)

√
F (0)

= 2XF ′(0)

Hence for δ > 0, n large

P (Sn ≤ 2F ′(0)X − δ) ≤ P (Sn ≤ an) = P (
√
nZn ≤ X) ≤ P (Sn ≤ 2F ′(0)X + δ)

apply Lindeberg to both sides,

Φ(2F ′(0)X − δ) ≤ Φ(2F ′(0) + δ)

Let δ → 0
P (
√
nZn ≤ X)→ Φ(2F ′(0)X)

8 Markov Chains

8.1 Notations

Let (Ω,F , P ) be a probability space and let S be a countable set, theLecture 22
(4/16/14) state space, let (Xn)n≥0 be S−valued rv’s.

Definition 195. (Xn) has the Markov property if

P (Xn+1 = xn+1|X0 = x0, ..., Xn = xn) = P (Xn+1 = xn+1|Xn = xn)

for all X0, ..., Xn+1 ∈ S, n ∈ N s.t.

P (Xn+1 = xn+1|Xn = xn) > 0

Definition 196. (Xn) is a time-homogeneous Markov chain if in addi-
tion

P (Xn+1 = y|Xn = x) = P (X1 = y|X0 = x)

∀n ≥ 0, X, Y ∈ S, or set

K(X,A) = P (Xn+1 ∈ A|Xn = x)
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The matrix
P = (PXY )X,Y ∈S

PXY = P (X1 = Y |X0 = x)

is the transition probability matrix of (Xn).

Recall P is a stochastic matrix, i.e. PXY ∈ [0, 1] and∑
Y ∈S

PXY = 1 ∀X ∈ S

Example 197. The simple random walk on Z is a Markov chain on
S = Z here

pn,n+1 = p, pn,n−1 = 1− p

pn.m = 0 if |n−m| ̸= 1

Definition 198. The distribution µ of X0 is called initial distribution
of the chain.

Note that µ and P characterize the distribution of the chain. Indeed

P (X0 = x0, ..., Xn = xn) = µ({X0})PX0,X1 ...PXn−1,Xn

In the sequel, (Xn) is a time-homogeneous Markov chain on S, with
given µ and P .

Theorem 199. (Markov property) Let X ∈ S and N ∈ N conditional
on {XN = x}, the sequence XN , XN+1,... is a Markov chain with tran-
sition probability P and initial distribution δk. Moreover, conditionally
on {XN = x}, XN , XN+1,... is independent of X0, ..., XN−1.

Proof. Exercise. (This is a special case of a result proved later)

Theorem 200. (Chapman-Kolomogorov) The n−step transition prob-
ability Pn

XY = P (Xn = y|X0 = x) satisfy the Chapman-Kolmogoro
equation

P
(m+n)
XZ =

∑
Y ∈S

p
(m)
XY p

(n)
Y Z ∀X,Y, Z ∈ S, m, n ≥ 1

In matrix notation
Pn = (p

(n)
XY )X,Y ∈S

is given by
P (n) = Pn = P = ... = P
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Moreover if µ is identified with the row vector

µ = (µ({X}))X∈S

then
P (Xn = Y ) = (µPn)Y

Y−th entry of row vector µPn.

Proof. We have

P
(m+n)
XZ =

∑
Y ∈S

P (Xm+n = z|X0 = x,Xm = y)︸ ︷︷ ︸
P (Xm+n=z|Xm=y)

P (Xm = y|X0 = x)

=
∑
Y ∈S

P
(n)
Y ZP

(m)
XY

and

P (Xn = y) =
∑
X∈S

P (Xn = y|X0 = x)P (X0 = x) = (µP (n))Y

Example 201. Let S = {0, 1} and 0 < α < β < 1

P =

(
1− α α
β 1− β

) ↗↘ ↗ −→
α
↘ ↗↘

1− α ↑ 0 1 ↓ 1− β
↖↙ ↖ ←−

β
↙ ↖↙

Hence

Pn =
1

α+ β

[(
β α
β α

)
+ (1− (α+ β))n

(
α −α
−β β

)]
n→∞−→ 1

α+ β

(
β α
β α

)

hence

lim
n→∞

P (Xn = 0) =
β

α+ β
, lim

n→∞
P (Xn = 1) =

α

α+ β
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Notation 202.
PX(B) = P (B|X0 = x)∀B ∈ F
EX(Z) = EPX [Z] expectation under PX

= E[Z|X = x] = value of E[Z|X0] on [X0 = x]

Definition 203. Let A ⊆ S then
HA = inf{n ∈ N0 : Xn ∈ A}

(inf∅ = +∞) is the hitting time of A.

hA(X) = P (HA <∞|X0 = x) = PX(HA <∞)

KA(X) = EX(HA)

Theorem 204. a) hA = (hA(X))X∈S is the minimal non-negative so-Lecture 23
(4/22/14) lution of {

hA(X) = 1 X ∈ A
hA(X) =

∑
Y ∈S PXY h

(A)(Y ) X /∈ A
the second case is called “mean value property”
b) kA = (kA(X))X∈S is the minimal non-negative solution of{

kA(X) = 0 X ∈ A
kA(X) = 1 +

∑
Y /∈A PXY k

(A)(Y ) X /∈ A

Proof. a) hA is a solution for X ∈ A is clear. For X /∈ A

hA(X) = PX(HA <∞) =
∑
Y ∈S

PX(HA <∞|X1 = Y )︸ ︷︷ ︸
h(A)(Y )

PX(X1 = Y )︸ ︷︷ ︸
PXY

if g is any non negative solution, we can show that g ≥ hA. Clearly
X ∈ A, g(X) = 1 = hA(X). For X /∈ A

g(X) =
∑
Y ∈S

PXY g(Y ) =
∑
Y ∈S

PXY 1 +
∑
Y /∈A

PXY g(Y )

=
∑
Y ∈A

PXY +
∑
Y /∈A

PXY (
∑
Z∈A

PY Z +
∑
Z /∈A

PY Zg(Z))

= PX(X1 ∈ A) + PX(X1 /∈ A,X2 ∈ A) +
∑
Y /∈A

∑
Z /∈A

PXY PY Zg(Z)

...

= PX(X1 ∈ A) + ...+ PX(X1 /∈ A, ...,Xn−1 /∈ A,Xn ∈ A) +
∑
Y1 /∈A

...
∑
Yn /∈A

PXY1 ...PYn−1Yng(Yn)

≥ PX(HA ≤ n) ∀n ≥ 1
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b) Exercise.

8.2 Strong Markov Property

We know that let (Xn) be a Markov chain with µ, P . Define Fn =
σ(X0, ..., Xn) n ≥ 0, then (Fn)n≥0 is a filtration, i.e. F0 ⊆ F1 ⊆ ....
Note since S is discrete, A ∈ Fn ⇐⇒ A is a countable union of sets
{X0 = x0, ..., Xn = xn}.

Definition 205. A r.v. τ : Ω → {0, 1, 2, ...,+∞} is a stopping time if
{τ = n} ∈ Fn, n ≥ 0, which is of course equivalent to say {τ ≥ n} ∈ Fn,
n ≥ 0.

Example 206. 1) τ ≡ t ∈ N0 ∪ (+∞). 2) HA : {HA = n} = {X0 /∈
A, ...,Xn−1 /∈ A,Xn ∈ A} ∈ Fn.
3) τ =last visit to A : {t = n} = {Xn ∈ A,Xn+1 /∈ A,Xn+2 /∈ A, ...} in
general /∈ Fn

Notation 207. Xτ is the r.v.

↗ −→ ↘
Xτ (w) := (Xτ(w))(w) Xτ = X0(τ, id)

Theorem 208. (Strong Markov Property) Let τ be a stopping time
conditionally on {τ < ∞} ∩ {Xτ = x}, (X̂n)n≥0, X̂n := X ′

τ+n is a
Markov chain with matrix P and initial distribution µ = δX for any X
s.t.

P ({τ <∞} ∩Xτ = x) ̸= 0

Moreover, (X̂n)n≥0 and (Xτ∩n)n≥0 are conditionally independent given
{τ <∞} ∩ {Xτ = x}.

Proof. 1) We first consider τ ≡ N ∈ N0 (deterministic time), we show

P ({XN = xN , XN+1 = xN+1, ..., XN+n = xN+n} ∩A|XN = x)

= 1X=XN
PXNXN+1

...PXN+n−1XN+n
P (A|XN = x) ∀A ∈ FN(8.1)

It suffices to consider A = {X0 = x0, ..., XN = xN}.

(8.1) is clear if X ̸= XN . Whereas if X = XN , it becomes

P (X0 = x0, ..., XN = xN , ..., XN+n = xN+n) = P (X0 = x0, ..., XN = xN )︸ ︷︷ ︸
µ(X0)PX0X1

...PXN−1XN

PXNXN+n
...PXN+n−1XN+n
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2) Now let τ be a stopping time, let A ∈ σ(Xn∩τ , n ≥ 0) and fix m ∈ N0.
Then A ∩ {τ = m} ∈ Fm. We have

P [{X̂1 = x1, ..., X̂n = xn} ∩A ∩ {τ = m} ∩ {Xτ = x}]
= P [{X̂1 = x1, ..., X̂n = xn} ∩A ∩ {τ = m} ∩ {Xm = x}]
= PX(X1 = x1, ..., Xn = xn)P [A ∩ {τ = m} ∩ {Xm = x}] by 1)
= PX(X1 = x1, ..., Xn = xn)P [A ∩ {τ = m} ∩ {Xτ = x}]

Adding over m ≥ 0, since∪
m≥0

{τ = m} = {τ <∞}

we get

P [{X̂1 = x1, ..., X̂n = xn} ∩A ∩ {τ = m} ∩ {Xτ = x}]
= PX(X1 = x1, ..., Xn = xn)P [A ∩ {τ = m} ∩ {Xτ = x}︸ ︷︷ ︸

B

]

Divide by P (B) =⇒

P [{X̂1 = x1, ..., X̂n = xn} ∩A|B] = PX(X1 = x1, ..., Xn = xn)P [A|B](8.2)

For A = Ω, we get the first claim:

P [{X̂1 = x1, ..., X̂n = xn}|B] = PX(X1 = x1, ..., Xn = xn) (8.3)

The second claim follows by combining (8.2) and (8.3)

P [{X̂1 = x1, ..., X̂n = xn}∩A|B] = P [{X̂1 = x1, ..., X̂n = xn}|B]P [A|B]

8.3 Recurrence and Transience

Definition 209. Let i, j ∈ SLecture 24
(4/24/14) 1) i leads to j, denoted (i→ j) if

Pi(H
{j} <∞) = Pi(Xn = j for some n ≥ 0) > 0

2) i commutes with j if i→ j and j → i, denoted (i↔ j).
3) (Xn) is irreducible if i↔ j for all i, j ∈ S.
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4) The equivalent classes of ↔ are called communicating classes.
5) A communicating class C is closed if

i ∈ C, i→ j =⇒ j ∈ C

i.e. chain cannot leave C.
6) i ∈ C is absorbing if {i} is a closed class.

Example 210.
1
2

←− ←− ←−
↙ ↖

↙↖ ↓ ↗
1
2−→ ↘ ↑ ↗

1
2−→ ↘ ↗↘

1 ↓ a
1
2←− b c

1
2←− d e ↓ 1

2

↘↗ ↖
1
2←− ↙ ↖

1
2←− ↙ ↖↙

a is absorbing. Classes are {a}, {b, c},{d, e}. {a} is closed, {b, c}, {d, c}
are not.

Definition 211. Let i ∈ S

τi = min{n ≥ 1, Xn = i} = ”first passage time”

More passage times:

τ
(0)
i = 0

τ
(1)
i = τi

τ
(r+1)
i = min{n ≥ τ (r)i + 1, Xn = i} ”first return after τ (r)i ”

Length of r-th excursion from i:

σ
(r)
i = (τ

(r)
i − τ (r−1)

i )1{τ (r−1)
i <∞}

Lemma 212. Let r ≥ 2. Conditional on {τ (r−1)
i < ∞}, σ(r)i is inde-

pendent of {X
k∩τ (r−1)

i

, k ≥ 0} and

P{σ(r)i = n|τ (r−1)
i <∞} = Pi(σ

(1)
i

↑
τi

= n),n ≥ 0

P{σ(r)i <∞|τ (r−1)
i <∞} = Pi(τi <∞)

78



Proof. Exercise by applying strong Markov property.

Definition 213.

Vi =
∑
n≥0

1{Xn=i} = # visit to state i

Remark 214.
Ei(VI) =

∑
n≥0

Pi(Xn = i) =
∑
n≥0

P
(n)
ii

Definition 215. i is recurrent if Pi(Vi =∞) = 1, i.e. chain will return
infinitely after, a.s.

i is transient if Pi(Vi <∞) = 1, i.e. chain will return only finitely many
times, a.s.

Theorem 216. (Recurrence/transience Dichotomy) Let i ∈ S either

1) Pi(τi <∞) = 1, in which case i is recurrent and
∑

n≥0 P
(n)
ii =∞, or

2) Pi(τi <∞) < 1, in which case i is transient and
∑

n≥0 P
(n)
ii <∞.

Lemma 217. Let fi = Pi(τi <∞), r < N, then Pi(Vi ≥ r) = f ri .

Proof. We have {Vi ≥ r} = {τ (r)i <∞} Pi- a.s. =⇒ r = 1 is clear.

For r ≥ 2

Pi(Vi ≥ r + 1) = Pi(τ
(r)
i <∞, σ(r+1)

i <∞)

= Pi(σ
(r+1)
i <∞|τ (r)i <∞)Pi(τ

(r)
i <∞)

= Pi(τi <∞)Pi(τ
(r)
i <∞) by lemma 212

= fi · f ri by induction
= f r+1

i

We now prove the theorem.

Proof. If fi = Pi(τi <∞) = 1, lemma 217 yields

Pi(Vi =∞) = lim
r→∞

Pi(Vi ≥ r) = lim
r→∞

1r = 1
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hence
∞ = Ei[Vi] =

∑
n≥0

P
(n)
ii

If fi < 1,

Pi(Vi <∞) = 1− Pi(Vi =∞) = 1− lim
r→∞

1r = 1

and ∑
n≥0

P
(n)
ii = Ei[Vi] =

∑
r≥0

Pi(Vi ≥ r) =
∑
r

f ri =
fi

1− fi
<∞

Definition 218. 1) C ⊆ S is recurrent / transient if all i ∈ C are
recurrent / transient.
2) (Xn) is recurrent / transient if all i ∈ S are recurrent / transient.

Example 219. Let (Xn) be simple symmetric random walk on Zd, then
(Xn) is recurrent if d ≤ 2 and transient if d ≥ 3.

Proof. Sketch of proof.
dimension = 1:

P
(2n)
ii =

2n!

n!n!

1

22n
∼ 1√

πn
by stirling

and P
(2n)
ii = 0 imply∑

n≥0

P
(n)
ii <∞ =⇒ (Xn) is recurrent

dimension = 2: Trick: let X,Y be independent 1-dim random walks

Z =
X + Y√

2

is 2-dim random walk, so

P
(2n)
ii (dim = 2) = (P

(2n)
ii (1-dim))2 ∼ (

1√
πn

)2 =
1

πn

thus ∑
P

(2n)
ii =∞ =⇒ recurent.
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dimension = 3:

P
(2n)
ii =

∑
j,k,l≥0j+k+l=n

(2n)!

(j!k!j!)2
1

62n
=

(2n)!

n!n!

1

22n

∑
(
n!

j!k!l!
)2

1

32n

Use ∑ n!

j!k!l!
= 3n

and
n!

j!k!l!
≤ n!

(m!)3
for m =

⌈n
3

⌉
to get

P
(2n)
ii ≤ (2n)!

n!n!

1

22n︸ ︷︷ ︸
≤const 1√

n

n!

(m!)3
1

3n︸ ︷︷ ︸
≤const 1

n

≤ const 1

n3/2
=⇒ summable =⇒ transient

dimension ≥ 4: if dim A ≥ 4 were recurrent, then d = 3 would also be
recurrent. τi = inf{n ≥ 1, Xn = i}.

Theorem 220. (Recurrent is contagious) Let i, j ∈ S. Suppose that iLecture 25
(4/27/14)
-Last Lec-

is recurrent and i→ j, then

1)
Pj(Xn = i i.o.) = 1

in particular
Pj(τi <∞) = 1 and j → i

2) j is also recurrent.

Proof. 1) Since i→ j, P
(m)
ij > 0 for some m ≥ 1. As Pi(Xn = i i.o.) = 1

P
(m)
ij = Pi(Xm = j) = Pi(Xm = j,Xn = i i.o.)

= Pi(Xm = j,Xm+k = i i.o.)
= Pi(Xm = j)Pi(Xm+k = i i.o.|Xm = j)

= P
(m)
ij · Pj(Xk = i i.o.) by Markov prop

thus
Pj(Xk = i i.o.) = 1
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2) Suppose for contract that j is transient, then∑
c≥0

P
(c)
jj <∞

we have i↔ j, hence
P

(m)
ij > 0, P

(n)
ji > 0

Note P (m+n+l)
jj ≥ P (m)

ij P
(l)
ii P

(n)
ji ∀ l ≥ 0, thus∑

l≥0

P
(l)
ii ≤

1

P
(m)
ij P

(n)
ji

∑
l≥0

P
(m+n+l)
jj︸ ︷︷ ︸

<∞ by assump.

<∞

thus contradict to i is recurrent.

Corollary 221. Let i ∈ S be recurrent, then

Cj = {j ∈ S, i→ j} = {j ∈ S, i↔ j} = equiv class of j

and Cj is recurrent.

Corollary 222. If (Xn) is irreducible thus:

One state is recurrent ⇐⇒ (Xn) is recurrent.

9 Facts about Characteristic Functions

Let X = (X1, ..., Xn) be n−dim random vector, i.e.

Xk : (Ω,F , P )→ R

is a r.v. for k = 1, ..., n.
Let µ be the distribution of X on Rn :

µ(B) := P (X ∈ B), B ∈ B(Rn)

Definition 223. The characteristic function of X (or of µ) (or Fourier
transform) is

ϕ : Rn → C

ϕ(u) =

ˆ
Rn

ei⟨u,x⟩µ(dx) = E[ei⟨u,x⟩]

=

ˆ
cos(⟨u, x⟩)µ(dx) + i

ˆ
sin(⟨u, x⟩)µ(dx)

82



Notation 224. ϕX , ϕµ, µ̂

Note if µ has a density f ,

ϕ(u) =

ˆ
ei⟨u,x⟩f(x)︸ ︷︷ ︸
⟨ei⟨u,·⟩,f⟩

L2

dx

basis of a space V =
∑d

i=1 Viei = (V1, ..., Vd), Vi = ⟨V, ei⟩ .

Because of short of time, we will only state the theorems.

Theorem 225. 1)
ϕ : Rn → C

is continuous.

2)
|ϕ(u)| = 1 ∀u

3)
ϕ(0) = 1

Theorem 226. Suppose that E[|X|m] <∞ for some m ∈ N, then

∂m

∂Xj1 ...∂Xjm

ϕ(u) = imE[Xj1 ...Xjme
i⟨u,X⟩]

In particular if X is one-dim (n = 1)

∂m

∂Xm
ϕ(0) = imE[Xm]

which is the formula for moments.

Remark 227. a ∈ Rm,

A ∈ Rm×n =⇒ ϕa+AX(u) = ei⟨u,a⟩ϕX(ATu)

Theorem 228. ϕµ characterizes µ i.e.

ϕµ = ϕµ̃ =⇒ µ = µ̃

Theorem 229. X1, ..., Xn are independent iff

ϕX(u) = ϕX1(u1)...ϕXn(un)

∀u = (u1, ..., un) ∈ Rn
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Theorem 230. Let µn, µ are probabilities on R and let ϕn, ϕ be the
corresponding characteristic functions

1) if µn =⇒ µ then
ϕn(t)→ ϕ(t)∀ t ∈ R

2) if ϕ̃(t) := limn→∞ ϕn(t) exists ∀ t, and ϕ̃ is continuous at t = 0, then
ϕ̃ is the characteristic function of a distribution µ̃ and

µn =⇒ µ̃

Example 231. 1)

µ = N (b, σ2) =⇒ ϕ(u) = exp(ibu− u2σ
2

2
)

b = 0, σ2 = 1, so
ϕ(u) = e−u2/2

2) µ = uniform(−a, a) =⇒

ϕ(u) =
sin(au)
au
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