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Background Magnetic Confinement

What is fusion?

Figure: ITER, Saint-Paul-lès-Durance, France

ITER is one of the world largest and most expensive science
experiments.
Started in 2013, complete in 2027. Estimated cost > 20 billion
Euro.
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Background Magnetic Confinement

Why confinement?

Figure: A cutaway of the ITER Tokamak

To extract energy from benign particle movements (analogy of
Archimedes’ Burning Mirror; don’t want a hydrogen bomb),
particles are tightly controlled under strong magnetic fields.
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Background Magnetic Confinement

What about layers?

Figure: delicious Crêpe

Design particle paths to be clustered and moving like fluid and in
layers (flux surfaces are Laminar flows). In fact, want maximal
layers.
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Background Magnetic Confinement

What are the layers?

Figure: stabilizing MHD instabilities in an axisymmetric toroid

∇p = J × B → B · ∇p = 0

Particles are stick to (helically moving along) the flux surfaces.
Layers are the pressure profiles (aka temperature profiles).
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Background Magnetic Confinement

Confinement surfaces

The ideal balanced force equation from previous slide is wrong.
For a multi-particle system, it can be out of balance and still in
quasi-static Magnetohydrodynamics (MHD) due to diffusion.
Figuring out temperature profiles and confinement surfaces are
two separated tasks. The discrepancy of the two provides insights
of transport properties, such as relaxation time and diffusion
length.
The goal of this project is to produce images of magnetic
confinement surfaces for given B fields, and from there to
determine if the confinement is closed and if it forms layers.
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Background Conventional Field Line Tracing

The challenges

Unlike pressure profiles, magnetic confinement surfaces are not
directly measured.
Traditionally people take measurements of B and use field line
tracing method:

x ′(t) = Bx (t)
y ′(t) = By (t)
z ′(t) = Bz(t)

=⇒

{
x ′(z) = Bx/Bz

y ′(z) = By/Bz

For every t , use Runge-Kutta, solve it as initial value problem, so
in literature, z := φ is often called the "time" coordinate.
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Background Conventional Field Line Tracing

The field line tracing algorithm

Pick a cross section z0 = φ0 and a point (x0, y0) on the cross
section as the starting point. Choose a n ∈ N, let ∆z = 2π/n.
After n forward steps, it will be back on that cross section. Record
the point, and continue iterations.
After many iterations, some shape will form on the cross section.
It is called the Poincaré plot.
On the next slide there is a Poincaré plot, with 3 different starting
points on the same cross section. It used n = 40, and made 500
turns around the torus.
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Background Conventional Field Line Tracing

Figure: Poincaré plot

The B field used in the plot was one of the known stable solutions
to MHD equilibrium, with d1,2 being parameters of the torus.

Bx = 8d1ρy

By = ρ2/2 + 2d2 + 4d1(ρ2 − 2z2)

Bz = 0.01/ρ
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Background Conventional Field Line Tracing

Why is the new method better?

ode45 has a global 4th order accuracy, but it assumes that B is
continuous and to be known everywhere on the tracing line.
Otherwise a spline (3rd order polynomial interpolation) is required.
In reality don’t have an analytic B, and measurements are done
on the grids points.
In comparison, the new method doesn’t need interpolations, and it
achieves a global 3rd order accuracy, and similar run-time to field
line tracing with interpolations.
More importantly, unlike field tracing method is controlled by the
initial value (stable if B is not turbulent), the new method takes all
grid points into account.
It utilizes the physics of confinement surfaces and allow
information to propagate from one layer to the neighboring layers.
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The New Modified Lax-Friedrichs Lax-Friedrichs Extension

Mathematical Formulation of the problem

Theorem
If the flux surface of a B field inside of a torus is closed and a B field is
not zero everywhere, then there is a ψ such that B · ∇ψ = 0 and the
contour of ψ is the flux surface of B.

Proof.
In 2D, it is clearly true. In 3D, not so fast, because in 3D two vectors
that are both perpendicular to a third vector are not necessary coincide
to each other. Luckily the underlying structures are two surfaces.
Assume flux of B is closed and combine with the fact that magnetic
lines have no crossings, the two surfaces have to agree.

R. Wu (NYU) Numerical Method Fusion 15 / 58



The New Modified Lax-Friedrichs Lax-Friedrichs Extension

Mathematical Formulation of the problem

Theorem
If the flux surface of a B field inside of a torus is closed and a B field is
not zero everywhere, then there is a ψ such that B · ∇ψ = 0 and the
contour of ψ is the flux surface of B.

Proof.
In 2D, it is clearly true. In 3D, not so fast, because in 3D two vectors
that are both perpendicular to a third vector are not necessary coincide
to each other. Luckily the underlying structures are two surfaces.
Assume flux of B is closed and combine with the fact that magnetic
lines have no crossings, the two surfaces have to agree.

R. Wu (NYU) Numerical Method Fusion 15 / 58



The New Modified Lax-Friedrichs Lax-Friedrichs Extension

Overview

Corollary
If there is no such ψ that can be found through the algorithm, then the
confinement surface of B is not closed.

This is the first showcase of how strong the interconnection is between
the algorithm and the underlying physical system. The rest of the talk
will continue to explore those ideas:

Show the stability of the algorithm (CFL) relates to the underlying
physical MHD stability;
Show the up winding scheme in the algorithm has a conservative
flow, which correlates to the physical B field.
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The New Modified Lax-Friedrichs Lax-Friedrichs Extension

Lax-Friedrichs

Let’s demonstrate why Lax-Friedrichs was chosen.
Consider the three Hamiltonian equations,

H(q,p) = E(t) = p2/2m + V (q)

dq
dt

=
∂H
∂p

dp
dt

= −∂H
∂q

In the first equation q,p are treated as if they were independent. The
next two equations add in their relations. Separating variables is the
key success to Hamilton mechanics.
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The New Modified Lax-Friedrichs Lax-Friedrichs Extension

Lax-Friedrichs Deviation

For simplicity, let’s start from 1D, H(q,p) = E , want to solve for q(t).
Treating q,p = qt as independent, first order Taylor to linearize H,

H
(
q,

q+
t + q−t

2
)

= H(q,q+
t )−

(∂H
∂qt

)
qt =q+

t

q+
t − q−t

2

= H(q,q−t ) +
(∂H
∂qt

)
qt =q−t

q+
t − q−t

2

where q±t are the right/left derivatives, thus in term of mesh grids, qi
means at the i th grid,

q+
t − q−t

2
=

qi+1 − 2qi + qi−1

2∆t
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The New Modified Lax-Friedrichs Lax-Friedrichs Extension

Lax-Friedrichs Assumption: going with the flow

Define viscosity,

σ =
∂H
∂qt

The reason why it is called will become apparent soon. Thus

qi =
∆t
σ

(
H(q,q+

t )− H(q,
qi+1 − qi−1

2∆t
)
)

+
qi+1 + qi−1

2

=
∆t
−σ
(
H(q,q−t )− H(q,

qi+1 − qi−1

2∆t
)
)

+
qi+1 + qi−1

2
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The New Modified Lax-Friedrichs Lax-Friedrichs Extension

Lax-Friedrichs Assumption: going with the flow and its
algorithm

Here is the meat of Lax-Friedrichs: How to precede iterations.
If σ > 0, use the 1st equation, replace H(q,q+

t ) by E . Elif σ < 0, use
the 2nd equation, replace H(q,q−t ) by E . Symbolically

qi ←
∆t
|σ|

(
E − H

(
qi ,

qi+1 − qi−1

2∆t
))

+
qi+1 + qi−1

2
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The New Modified Lax-Friedrichs Lax-Friedrichs Extension

Lax-Friedrichs algorithm explanation

The replacement of H(q,q±t ) by E means that in the early stage of
iterations, if qi ,qi±1 were used to compute H(q,q±t ), they wouldn’t
give E . In other words, early q didn’t satisfy the equation of
motion.
The choice of choosing H(q,q±t ) depends on the sign of σ made
by LF was a delicate one. As it will be shown, it follows the
direction of the flow of the hyperbolic system (in connection to
conservation law).
The convergence of LF requires as iterations go on,

H
(

qi ,
qi+1 − qi−1

2∆t

)
→ E
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The New Modified Lax-Friedrichs Lax-Friedrichs Extension

Lax-Friedrichs stability

Write the iteration in matrix form, and greatly simplify things (otherwise
numerical analysis of stability can never work ¨̂ ), drop q dependence
of H, and assume H ≈ σqt ,E = 0

q(n+1) = Aq(n)

where

A =



. . .
. . . . . .

|σ|−σ
2|σ|

|σ|+σ
2|σ|

. . . . . .
. . .
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The New Modified Lax-Friedrichs Tailor to the Problem

Tailor to the problem

The matrix A from previous slide showed how the data propagated. It
either copied its left or right element, depending on the sign of qt ; qn+1.
Tailor to the problem, H = B · ∇ψ = 0, with the corresponding
substitutions q = ψ, σ = B,qt = ∇ψ,E = 0,

ψ(n+1)(xi , yj) =



|Bx |
∆x ψ

(n)(xi−1,yj )+
|By |
∆y ψ

(n)(xi ,yj−1)

|Bx (xi ,yj )|
∆x +

|By (xi ,yj )|
∆y

Bx > 0,By > 0

|Bx |
∆x ψ

(n)(xi+1,yj )+
|By |
∆y ψ

(n)(xi ,yj−1)

|Bx (xi ,yj )|
∆x +

|By (xi ,yj )|
∆y

Bx < 0,By > 0

|Bx |
∆x ψ

(n)(xi−1,yj )+
|By |
∆y ψ

(n)(xi ,yj+1)

|Bx (xi ,yj )|
∆x +

|By (xi ,yj )|
∆y

Bx > 0,By < 0

|Bx |
∆x ψ

(n)(xi+1,yj )+
|By |
∆y ψ

(n)(xi ,yj+1)

|Bx (xi ,yj )|
∆x +

|By (xi ,yj )|
∆y

Bx < 0,By < 0
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The New Modified Lax-Friedrichs Tailor to the Problem

Error to LF

To test accuracy and convergence, need a definition of error.
Recall

qi ←
∆t
|σ|

(
E − H

(
qi ,

qi+1 − qi−1

2∆t
))

︸ ︷︷ ︸
convergence error

+
qi+1 + qi−1

2

The linearized LF converges to a linear function: qi = a · i + b.
This shows the first part can be consider as the error, and the
viscosity |σ| is the speed of convergence.

R. Wu (NYU) Numerical Method Fusion 25 / 58



The New Modified Lax-Friedrichs Tailor to the Problem

Error to the problem

The error after n iterations in 2D is

error (n)(xi , yj) =

∣∣Bx
ψ(xi+1,yj )−ψ(xi−1,yj )

2∆x + By
ψ(xi ,yj+1)−ψ(xi ,yj−1)

2∆y

∣∣
|Bx |
∆x +

|By |
∆y

which is proportional to B · ∇cψ, using the central difference, thus it’s
proportional to the angle between B and ∇cψ. Thus define the error on
the domain to be

error (n) =
1
D

∫∫
D

B · ∇cψ

‖B‖‖∇cψ‖
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The New Modified Lax-Friedrichs Tailor to the Problem

Stability & CFL

Previously for 1D, the stability matrix A is just 0/1 off-diagonal.

A=



0
. . . . . .

. . . 0
. . . . . .

. . . 0
. . . . . .

. . . 0
. . . . . .

. . . . . . 0
. . . . . .

. . . . . . 0
. . . . . .

|Bx |−Bx
2∆x

|Bx |
∆x +

|By |
∆y

|By |−By
2∆y

|Bx |
∆x +

|By |
∆y

0
|By |+By

2∆y
|Bx |
∆x +

|By |
∆y

|Bx |+Bx
2∆x

|Bx |
∆x +

|By |
∆y

. . . . . . 0
. . . . . .

. . . . . . 0
. . . . . .

. . . . . . 0
. . . . . .

. . . . . . 0
. . . . . .

. . . . . . 0
. . . . . .

. . . . . . 0
. . .

. . . . . . 0
. . .

. . . . . . 0
. . .

. . . . . . 0


Above is A in 2D. Restricting its eigenvalue (CFL) < 1 implies
|Bx |/∆x , |By |/∆y should be on the same order.
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The New Modified Lax-Friedrichs Tailor to the Problem

Conservation & Hyperbolicity

Recall the connection between hyperbolic system and
conservation laws. Generally speaking Lax-Friedrichs works well
for hyperbolic equations.
The physical understand of this connection is that there is a
general flow in the system that is conversed. In the problem, the B
field serves as the general flow and it is conversed.
Because hyperbolic equation has two branches, one is bounded
below and the other bounded above, the closed magnetic
confinement surface guarantees that the contour of Hamiltonian is
well structured, i.e. it has a min or max; the data flow conservation
guarantees that updating formula will follow the path that goes to
the min or max.
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The New Modified Lax-Friedrichs Tailor to the Problem

Boundary Value & Initial Value problem

General LF algorithm will require:
1. Fix the boundary during iterations. Typically choose constant
values. That is because the constant function is a solution to the
linearized Hamiltonian.
Does’t mean it will get a constant answer? Yes, but it takes infinite
number of steps. Before it gets to that, it will return a reasonable
solution. Since only interested in the contour of ψ, the exact scale
doesn’t matter.
This also suggest that since information flows from the boundary
to inside, pick

number of iterations ≈
√

3 · number of cubic grids
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The New Modified Lax-Friedrichs Tailor to the Problem

Boundary Value & Initial Value problem

General LF algorithm will require:
2. After fix the constant boundary, say K , then typically choose a
constant, say M, for the interior points as initial values.
If K > 0, set M > B. If K < 0, set M < B. During the iterations,
only update in increasing or deceasing order, i.e. for K > 0

ψ(n+1) = min
{
ψ(n),whatever LF computes

}
Change to max for K < 0. That is to force the hyperbolic to
converge to its min/max, depending on the branches.
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The New Modified Lax-Friedrichs Tailor to the Problem

Existence & Uniqueness

As it was shown in the corollary, if LF returns no sensible
solutions, it means

1 either there is no closed magnetic confinement surfaces,
2 or the LF algorithm hasn’t converge yet due to lack of iterations,
3 or unable to converge due to instability with violation of CFL.

What about uniqueness? Although both ψ and ψ2 are satisfied,
soon as the boundary was chosen to be a constant, only that
constant will be the solution.
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The New Modified Lax-Friedrichs The New Modified LF

What about the new method?

The new method requires nothings:
1. Not fix the boundary during iterations.
2. Nor does it force the updating to go monotone.
It instead:
picks random values as initial values (we call them dopings) and
update to whatever LF computes.
Why?
1. Each layer of closed confinement surfaces is separated and
shielded. Acting like a boundary, what’s inside remains inside;
what is outside remains outside, because B field has no crosing.
2. The data flow direction is already conservative, the path is on
the convergence path. Don’t need additional convergence
imposition.
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The New Modified Lax-Friedrichs The New Modified LF

Experimental results

Figure: From Doughnuts to Banana Orbits
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The New Modified Lax-Friedrichs The New Modified LF

Experimental results

Discretization: The square dots are the boundary. There are only
about 20× 20 = 400 points in the domain and it is impressive to learn
that this is enough to get good results.
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The New Modified Lax-Friedrichs The New Modified LF

Experimental results

Both graphs used traditional LF. One started with positive initial values;
the other started with negative values.

Figure: 2D surface plots
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The New Modified Lax-Friedrichs The New Modified LF

Experimental results

Red lines are exact solutions; blue lines are LF solutions. Left graph
used traditional LF & right graph used the new modified LF.
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The New Modified Lax-Friedrichs The New Modified LF

Experimentally test the hypotheses

Hypotheses:

1 The underlying flow of the system is the B field.
2 That the flow is conservative provides super convergence so that

is no need for imposing the monotonic convergence requirement
as for the traditional LF.

3 That the flux surface is closed provides a build-in boundary so that
there is no need for fixed boundary.

4 An violation of CFL will return no sensible solutions. Such
instability is linked to the physical instability of MHD.

Having those properties turn out to be critical for the 3D islands
example, where contours are no longer monotonically nested.
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The New Modified Lax-Friedrichs The New Modified LF

Experimentally test the hypotheses

Test hypothesis 1.
Take the example where B fields are approximately concentric circles.
Don’t use the matrix, use loops for the LF updating formula, i.e. let it
sweep like a wedding cake. Then flip B → −B. Observed indeed while
sweeping in the direction of B, got better convergence and required
less iterations.

Figure: spiral like a wedding cake

R. Wu (NYU) Numerical Method Fusion 39 / 58



The New Modified Lax-Friedrichs The New Modified LF

Experimentally test the hypotheses

Test hypothesis 2.
Change the Hamiltonian to

B · ∇ψ
‖∇ψ‖

= 0

so that σ 6= B, then computed the new updating rules and found the
new rule would depend on all 4 neighboring points, thus the elegant
data propagation direction didn’t exist. Found the spiral on wedding
cake method were no longer effective, and increasing iterations would
no longer always decreased errors.
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The New Modified Lax-Friedrichs The New Modified LF

Experimentally test the hypotheses

Test hypothesis 3.
This was easy. Cut the domain in half and kept the upper half so that
there would be no closed flux surfaces, then observed no convergence
at all. Next tested a non-smooth boundary domain which had a
X-divertor (e.g. separatrix of magnetic islands), and it handled very
well.

Left graph shows the boundary. On the right, red lines are exact
solutions, blue are LF solutions.
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The New Modified Lax-Friedrichs The New Modified LF

Experimentally test the hypotheses

Test hypothesis 4.
Recall CFL condition says the order of Bx/∆x ,By/∆y and Bz/∆z
should be the same, so that the eigenvalues of the matrix A is at
minimal.
Suppose same B, but Bz is amplified

Bx = 8d1ρy

By = ρ2/2 + 2d2 + 4d1(ρ2 − 2z2)

Bz = 0.01/ρ→ Bz = 1/ρ

Traditional field line tracing will return the same plot. For it, this change
means rotation in azimuthal direction 100 times faster; but for the LF,
the result is chaos, which is also unstable for the physical MHD system.
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The New Modified Lax-Friedrichs The Hybrid LF

Is high order necessary?

Is the higher the better?
Recall from the X-divertor example, the simple central difference
didn’t capture the sharp turn very well, which motivates to use
high order method.
However recall from testing hypothesis 2, when H depended on all
4 neighbors, i.e. lost its elegant conservation flow, convergence
would be in jeopardy. High order will depend on more than 4
neighbors. It turns out that it is still reasonably but not strictly
convergent, i.e. tails can grow.
As will be shown, a hybrid method, that combines 1st order and
high order LF, works the best.
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The New Modified Lax-Friedrichs The Hybrid LF

High order LF

A well-known method for high order derivatives is the high order ENO
and WENO schemes. For sake of speed, ENO was used.
It replaces left/right derivatives by the following. E.g. to compute
d+q(t). First compute d2qi := (qi+1 − 2qi + qi−1)/(∆t)2, and d2qi+1,
which are by themselves high order. If |d2qi | � |d2qi+1|, then

d+qi ←
−qi+2 + 4qi+1 − 3qi

2∆t

There is another replacement for case |d2qi | � |d2qi+1| and a third
replacement formula for the rest. They all look like high order runge
kutta, but they only use values at grid points.
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The New Modified Lax-Friedrichs The Hybrid LF

The hybrid LF

Use Guang-Shan Jiang, Chi-Wang Shu’s paper, "Efficient
Implementation of Weighted ENO Schemes". High order derivatives
were added to the algorithm and only the diffusion term was modified,
because that term was what the solution would converge to

qi+1 + qi−1

2

Replacing each qi+1,qi−1 there, and using ENO for d±qi ,

qi+1 ← qi + d+qi ·∆t , qi−1 ← qi − d−qi ·∆t

The hybrid LF algorithm spends first half of iterations in the modified
1st order LF, then the second half in the high order LF.
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The New Modified Lax-Friedrichs The Hybrid LF

The hybrid LF results

Use hybrid LF for the X-divertor. Compared to previous results, it
improves sufficiently. The average angle error is 0.4046 degrees.
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The New Modified Lax-Friedrichs The Hybrid LF

The hybrid LF accuracy test

For the accuracy test, increased grids points and increased
iterations. As mentioned before, high order LF is not strictly
convergent, the tail will grow. The table below recorded the
number of iterations that gave the minimal errors.

grids iterations angle error (deg) run-time (s)
15×25 50 0.5511 0.1596
29×50 400 0.0402 5.3741
44×75 2000 0.0142 65.7846

Thus the new method is about 3rd order global accurate. Most of
the error happened in the middle of the graph, where B turned
sharply and there weren’t many grid points to support it.
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Current Work, Future Work & Conclusion Current & Future Work: 3D Islands

Summary of Past Work

J. Ongena, R. Koch, R. Wolf H. Zohm, Magnetic-confinement fusion,

Nature Physics 12, (2016) doi:10.1038/nphys3745

After successfully simulated the limiter and divertor configurations
(shown respectively in above pictures), the hybrid LF method is
being applied to magnetic islands.
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Current Work, Future Work & Conclusion Current & Future Work: 3D Islands

3D Islands

pictures source is the same as the previous slide.

One example of magnetic islands is created by twisted flux tubes,
which are periodic around the azimuthal direction.
In term of the Toroidal coordinates, the period around the big
circle is in commensurate to the period around the small circle.
Such flux surfaces are called rational surfaces.
They are the center of turbulence. Unlike irrational surface, due to
its periodicity, the rational surface will return to its initial stating
point. As getting closer to the center of island, collisions are
unavoidable. Laminar flow is destroyed.
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3D Islands

Figure: Poincaré Plot, used field line tracing

The picture shows a 2-paired and a 3-paired islands. The 2-paired
(3-paired) island makes 2 · 2π (3 · 2π) polar angle to come back to
the initial cross section. They are nested layers too, i.e. there are
smaller 2-paired or 3-paired islands inside of them.
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Hybrid FL applied to 3D Islands

Hybrid FL Algorithm
Use cylindrical coordinate, and glue z = 0 and z = 2π. They are
amount to replace

∇ → ∂

∂x
,
∂

∂y
,

1
z
∂

∂z
and z[k ]→ z[(k mod (length(z)− 1)) + 1]

Set initial values constant everywhere with some dopings. Those
dopings will create hills and valleys. If one were used the
traditional LF, i.e. fixing the boundary and use monotonic updates,
then he would not be able see hills and valleys.
Choose ∆z wisely. If it is small, there will be too many cross
sections, consume time. If it is too big, violate CFL.
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Things to try in the near future

Recognized that at least a 20× 20 grid is required on each cross
section for each island, for a single island it takes about 20
minutes to run, thus a complete picture like above of 5
independent islands will take 20× 53 = 40 hours, using looping
fashion.
The size of the matrix A is 2000× 2000. Using sparse matrix
multiplication and parallelism may speed it up.
Obviously moving from 1st to 3rd order will dramatically increase
computations, but it also boosts accuracy, which may mean that
we can try to move to 5th order but reduce grid points so that to
attain same accuracy with less grid.
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Conclusions

We revitalized conventional LF method so that there is no fixed
boundary (by the boundary value problem) nor structured initial
values (by the initial value problem), and there is no imposed
monotonicity.
We gave a coherent derivation of Lax-Friedrichs. We recognized
its hidden assumptions and its connections to the conservation
law. Because of its universal appealing assumption and our added
values to it, made it maybe applicable to not only B fields, but
many other physical models with different flows: streamline flow,
Poincaré flow, Ricci flow, renormalization flow...
The new hybrid LF has maximal connection to the physical
systems. (next slide)
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Conclusions

1 The conservative data flow structure diagnoses the closeness of
confinement surfaces.

2 CFL stability links to the stability of magnetic flux configurations.
3 The number of iterations manifests causality. That is because data

flow from one point to another through one iteration. Every point
will depend on all its neighbors, unlike field line trace who
depends on its one preceding point, so one bad measurement of
B will fall everything. Moreover if field line trace hits the Cantor
fields (fields contain B =∞ point), it will stop progressing, so
points who are far distance from it will suffer too. In contrast, LF
will treat B =∞ point as just one of its neighbors and points who
are far distance from it won’t be affect by it.
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