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A list of great numerical algorithms and history 

http://people.maths.ox.ac.uk/trefethen/inventorstalk.pdf  

The HPC notes are based on an on-line course by Rich Vuduc, High Performance Computing, 

Udacity, George Tech.  

 

 

The Past: Numerical Analysis 
1. Ordinary Differential Equation   

 Initial Value Problem, Euler Method, Runge-Kutta, Adams-Bashforth… 

𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡)), 𝑦(𝑡0) = 𝑦0 
 

Forward Euler (Explicit) ~ 1st order ~ local truncation error 𝑂(ℎ2)  
 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛, 𝑦𝑛) 
Proof:  

 

𝑦𝑛+1 = 𝑦(𝑡𝑛 + ℎ) = 𝑦𝑛 + ℎ𝑦
′(𝑡𝑛) + 𝑂(ℎ

2) 
 

Thus 1st order schema means its local error 𝑂(ℎ2). Local error is the error directly inherited from 

its previous 𝑦𝑛. Since every step has some error, what is the total error contributed up to this 

point? We define global truncation error  

𝑔𝑛 = |𝑦𝑡𝑟𝑢𝑒(𝑡𝑛) − 𝑦𝑛| 
 

Claim 𝑔𝑛~𝑂(ℎ). 
 

Proof: Assume 𝑓 is Lipschitz in 𝑦 with Lipschitz constant 𝐿, and |𝑦′′| is bounded by 𝑀. 

 

http://people.maths.ox.ac.uk/trefethen/inventorstalk.pdf
http://udacity.com/course/high-performance-computing--ud281
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𝑦𝑡𝑟𝑢𝑒(𝑡𝑛+1) = 𝑦𝑡𝑟𝑢𝑒(𝑡𝑛) + ℎ𝑓(𝑡𝑛, 𝑦𝑡𝑟𝑢𝑒(𝑡𝑛)) +
ℎ2

2
𝑦′′(𝜏)|

𝜏∈[𝑡𝑛,𝑡𝑛+1]⏟            
|.|≤𝑀ℎ2

  

ℎ𝑓(𝑡𝑛, 𝑦𝑡𝑟𝑢𝑒(𝑡𝑛)) ≤ ℎ𝑓(𝑡𝑛, 𝑦𝑛)⏟      
𝑦𝑛+1−𝑦𝑛

+ ℎ [𝑦𝑡𝑟𝑢𝑒(𝑡𝑛) − 𝑦𝑛]⏟          
±𝑔𝑛

𝐿  

Combining the two above 

 

𝑦𝑡𝑟𝑢𝑒(𝑡𝑛+1) − 𝑦𝑛+1 ≤ 𝑦𝑡𝑟𝑢𝑒(𝑡𝑛) − 𝑦𝑛 + ℎ𝑔𝑛𝐿 +𝑀ℎ
2 

 

That is  

 

𝑔𝑛+1 ≤ 𝑔𝑛(1 + ℎ𝐿) + 𝑀ℎ
2 

 

Since no error at initial point, 𝑔1 is equal to the local truncation error 

 

𝑔1 = 𝑀ℎ
2 

then  

 

𝑔𝑛 ≤ 𝑀ℎ
2 [1 + (1 + ℎ𝐿) + ⋯+ (1 + ℎ𝐿)𝑛−1]⏟                      

[(1+ℎ𝐿)𝑛−1]/ℎ𝐿

=
𝑀ℎ

𝐿
[(1 + ℎ𝐿)

𝑡𝑛
ℎ − 1] →

𝑀ℎ

𝐿
[𝑒𝐿𝑡𝑛 − 1] 

 

because 𝑛 = 𝑡𝑛/ℎ. We see indeed the global error grows like 𝑂(ℎ) and it grows as 𝑡 increases. 

 

QED 

 

There is another error called, Round off Error. It is different from truncation error. It is the limit 

of the machine representation. See IEEE standard, e.g. 10−16 for double precision. When ℎ → 0, 

round off error actually → infinity. 

 

For details read short book by Michael Overton, NYU, Numerical Computing with IEEE 

Floating Point Arithmetic, SIAM  

 

 

Backward Euler (Implicit) because 𝑓(𝑡𝑛+1, 𝑦𝑛+1) is not known 

 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛+1, 𝑦𝑛+1) 
 

For special 𝑓, one can use simple algebra to solve for 𝑦𝑛+1, then do iteration. But in general, we 

are not luckily. Then we have to update  

 

𝑦𝑛+1
(𝑘+1)

= 𝑦𝑛
(𝑘+1)

+ ℎ𝑓(𝑡𝑛+1, 𝑦𝑛+1
(𝑘)
) 

 

called fixed point iteration. Its local and global errors can be proved as before. 

 

http://cs.nyu.edu/overton/book/index.html
http://cs.nyu.edu/overton/book/index.html
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Trapezoidal rule/Crank-Nicolson ode23t 

It is 2nd order 

𝑦𝑛+1 = 𝑦𝑛 + ℎ
𝑓(𝑡𝑛+1, 𝑦𝑛+1) + 𝑓(𝑡𝑛, 𝑦𝑛)

2
 

 

 

2nd order Runge–Kutta ode23 

 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓 (𝑡𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
ℎ𝑓(𝑡𝑛, 𝑦𝑛)) 

 

4th order Runge–Kutta ~ local error 𝑂(ℎ5), global error 𝑂(ℎ4) ode45 

 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

 

Where 

𝑘1 = 𝑓(𝑡𝑛, 𝑦𝑛)  𝑘2 = 𝑓 (𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘1) 

 

𝑘3 = 𝑓 (𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘2) 𝑘4 = 𝑓(𝑡𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘3) 

 

 

default error 10−6, change setting odeset 

http://www.mathworks.com/help/matlab/ref/ode45.html#input_argument_options 

 

Adams-bashforth (2-step linear fit) 

Notice 

𝑦(𝑡𝑛+1) = 𝑦(𝑡𝑛) + ∫ 𝑦′(𝑡)𝑑𝑡
𝑡𝑛+1

𝑡𝑛

 

 

Using Newton’s idea, we can use interpolating polynomial 𝑃(𝑡) as an approximation of 𝑦′, then 

to predict future 𝑦(𝑡𝑛+1)  
 

𝑦(𝑡𝑛+1) ≈ 𝑦(𝑡𝑛) +
3

2
ℎ𝑓(𝑡𝑛, 𝑦𝑛) −

1

2
ℎ𝑓(𝑡𝑛−1, 𝑦𝑛−1)⏟                    

≔𝑃𝑛+1

 

 

 

Two-step Adams-Moulton (implicit scheme) uses Adams-bashforth result as an intermediate 

step, then fed into the implicit Euler, called the corrector step. This method is very good for 

stiffness (involving high derivative, i.e. small ℎ results large oscillation—unstable, so implicit 

scheme becomes a better choice, which allows to take larger time steps than any other schemes, 

we will prove this later) ode113 

http://www.mathworks.com/help/matlab/ref/ode45.html#input_argument_options
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First compute 𝑃𝑛+1 as above, then backward Euler  

 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛+1, 𝑦𝑛 + 𝑃𝑛+1) 
 

Or half backward and half forward 

 

𝑦𝑛+1 = 𝑦𝑛 + ℎ
𝑓(𝑡𝑛+1, 𝑦𝑛 + 𝑃𝑛+1) + 𝑓(𝑡𝑛, 𝑦𝑛)

2
 

 

 

Gear method ode15s for stiffness rising from physics 

 

http://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html#bu3n5rf-1 

 
Solver Problem 

Type 
Accuracy When to Use 

ode45  Nonstiff Medium Most of the time. ode45 should be the first solver to try. 

ode23  Low ode23 can be more efficient than ode45 at problems with crude 
tolerances, or in the presence of moderate stiffness. 

ode113  Low to 
High 

ode113 can be more efficient than ode45 at problems with stringent 
error tolerances, or when the ODE function is expensive to evaluate. 

ode15s  Stiff Low to 
Medium 

Try ode15s when ode45 fails or is inefficient and you suspect that the 
problem is stiff. Also use ode15s when solving differential algebraic 
equations (DAEs). 

ode23s  Low ode23s can be more efficient than ode15s at problems with crude 
error tolerances. It can solve some stiff problems for which ode15s is 
not effective. 
ode23s computes the Jacobian in each step, so it is beneficial to 
provide the Jacobian via odeset to maximize efficiency and 
accuracy. 
If there is a mass matrix, it must be constant. 

ode23t  Low Use ode23t if the problem is only moderately stiff and you need a 
solution without numerical damping.  
ode23t can solve differential algebraic equations (DAEs). 

ode23tb  Low Like ode23s, the ode23tb solver might be more efficient 
than ode15s at problems with crude error tolerances. 

ode15i  Fully 
implicit 

Low Use ode15i for fully implicit problems f(t,y,y') = 0 and for differential 
algebraic equations (DAEs) of index 1. 

 

 Stability, Error Analysis, Convergence 
 

Just like to test stability of linear system 𝑦𝑛 = 𝐴𝑦𝑛−1, ( 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 𝑠table if all eigenvalues of 𝐴 <
1), here to test the stability of for(back)word Euler, we try linear function 

http://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html#bu3n5rf-1
http://www.mathworks.com/help/matlab/ref/ode45.html
http://www.mathworks.com/help/matlab/ref/ode23.html
http://www.mathworks.com/help/matlab/ref/ode113.html
http://www.mathworks.com/help/matlab/ref/ode15s.html
http://www.mathworks.com/help/matlab/ref/ode23s.html
http://www.mathworks.com/help/matlab/ref/ode23t.html
http://www.mathworks.com/help/matlab/ref/ode23tb.html
http://www.mathworks.com/help/matlab/ref/ode15i.html
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𝑓 = 𝑦′ = 𝑎𝑦 
 

(notice this satisfies the Lipschitz condition we discussed before)  

 

Let 𝑎 be complex, then forward Euler 

 

𝑦𝑛+1 = (1 + 𝑎ℎ)𝑦𝑛 = (1 + 𝑎ℎ)
𝑛+1𝑦0 

Backward Euler 

𝑦𝑛+1 =
1

1 − 𝑎ℎ
𝑦𝑛 =

1

(1 − 𝑎ℎ)𝑛+1
𝑦0 

 

Hence the solution will not grow to ∞ for small 𝑦0, i.e  

 

stable, if  |1 ± 𝑎ℎ| {
 < 1 𝑓𝑜𝑟𝑤𝑎𝑟𝑑
 > 1 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑

 

 

 
Picture from https://courses.engr.illinois.edu/cs450/fa2009/odestability.pdf page 7 

Back(for)ward Euler, (Un)stable in shaded region 

 

 

Showing the stability region for backward Euler is very big, so implicit scheme allows large ℎ  

 

 Boundary Value Problem 
 

Dirichlet, or even Robin = Dirichlet + Neumann, e.g. SHO of two ends 

𝑦′′(𝑥) + 𝑦(𝑥) = 0, 𝑦(0) = 0, 𝑦′ (
𝜋

2
) = 1 

 

Apply shooting method 

 

Use 𝑦0 and try different 𝑦′0 till hit 𝑦𝑇 

Infinite Domain: boundary given at infinity 

Turn to Neumann at large 𝑇, Turn into system of 1st order 

For linear ode, use finite difference then get to 𝐴𝑥 = 𝑏 
 

bvp4c  http://mathworks.com/help/matlab/ref/bvp4c.html#zmw57dd0e79452 

  

 

https://courses.engr.illinois.edu/cs450/fa2009/odestability.pdf%20page%207
http://mathworks.com/help/matlab/ref/bvp4c.html#zmw57dd0e79452
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2. Finite Difference Scheme for PDE  

 Heat Equation 
Heat equation is very important because Black-Scholes is a heat equation, see  

http://www.math.nyu.edu/faculty/kohn/pde.finance/2015/section2.pdf  

 

 𝑢𝑡 = 𝑢𝑥𝑥 

 Neumann Analysis  
Find the bound of Courant–Friedrichs–Lewy condition (CFL) so that the solution is stable in 

time. 

 

  λ =  
Δ𝑡

Δ𝑥2
≤ CFL 

 

Leapfrog (2, 2)  

 

𝑢𝑛
𝑚+1 = 𝑢𝑛

𝑚−1 + 2𝜆(𝑢𝑛+1
𝑚 − 2𝑢𝑛

𝑚 + 𝑢𝑛−1
𝑚 ) 

 

resulting |𝑔| > 1 unstable for all 𝜆. 𝑔 is given later in the proof. 

 

  

Forward Euler 

 

𝑢𝑛
𝑚+1 = 𝑢𝑛

𝑚 + 𝜆(𝑢𝑛+1
𝑚 − 2𝑢𝑛

𝑚 + 𝑢𝑛−1
𝑚 ) 

 

resulting |𝑔| ≤ 1 stable for 𝜆 ≤
1

2
. 

 

Backward Euler 

 

𝑢𝑛
𝑚+1 = 𝑢𝑛

𝑚 + 𝜆(𝑢𝑛+1
𝑚+1 − 2𝑢𝑛

𝑚+1 + 𝑢𝑛−1
𝑚+1) 

 

 Transport Equation (One-way Wave Equation) 
It is the simplest pde. 

𝑢𝑡 = 𝑢𝑥 

CFL  λ =  
Δ𝑡

Δ𝑥
 

Forward Euler 

 

𝑢𝑛
𝑚+1 = 𝑢𝑛

𝑚 +
1

2
𝜆(𝑢𝑛+1

𝑚 − 𝑢𝑛−1
𝑚 ) 

 

m temporal step, n spatial step, unstable for all λ. 
 

 

Leapfrog (2, 2)  

http://www.math.nyu.edu/faculty/kohn/pde.finance/2015/section2.pdf
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𝑢𝑛
𝑚+1 = 𝑢𝑛

𝑚−1 + 𝜆(𝑢𝑛+1
𝑚 − 𝑢𝑛−1

𝑚 ) 
 

stable for λ ≤ 1. 

 

 

 

Leapfrog (2, 4)  ~ 𝑂(Δ𝑥5) 

 

𝑢𝑛
𝑚+1 = 𝑢𝑛

𝑚−1 + 𝜆 [
4

3
(𝑢𝑛+1
𝑚 − 𝑢𝑛−1

𝑚 ) −
1

6
(𝑢𝑛+2
𝑚 − 𝑢𝑛−2

𝑚 )] 

 

stable for λ ≤ 0.7. 100 times faster than leapfrog (2, 2)   

 

Lax-Wendroff 

 

𝑢𝑛
𝑚+1 = 𝑢𝑛

𝑚 +
1

2
𝜆(𝑢𝑛+1

𝑚 − 𝑢𝑛−1
𝑚 ) +

1

2
𝜆2(𝑢𝑛+1

𝑚 − 2𝑢𝑛
𝑚 + 𝑢𝑛−1

𝑚 ) 

 

add diffusion to Euler forward, making it stable.  

 

Implicit Schemes 

 

𝑢𝑛
𝑚+1 = 𝑢𝑛

𝑚 +
1

2
𝜆(𝑢𝑛+1

𝑚+1 − 𝑢𝑛−1
𝑚+1) 

𝐴𝑢𝑚+1 = 𝑢𝑚 

where matrix 𝐴 = (

2 −𝜆
𝜆 2

⋯

⋮ ⋱ ⋮
⋯

). stable for all 𝜆. 

 

 

MacCormick Predictor Corrector 

 

𝑢𝑛
𝑝 = 𝑢𝑛

𝑚 +
𝜆

2
(𝑢𝑛+1
𝑚 − 𝑢𝑛−1

𝑚 ) 

𝑢𝑛
𝑚+1 =

1

2
[𝑢𝑛
𝑚 + 𝑢𝑛

𝑝
+ 𝜆(𝑢𝑛+1

𝑝
− 𝑢𝑛−1

𝑝
)]  

 

Proof of Stability 

The Neumann Analysis we did before won’t work for non-linear, and it will provide necessary 

not sufficient stable condition.   

 

Assume solution of the form 

 

𝑦𝑛
𝑚 = 𝑔𝑚𝑒𝑖𝑛𝜉Δ𝑥 
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This is very typical solution. Temporal grows like Gaussian and spatial functions are sinusoid so 

that boundaries can be easily satisfied.  

 

Proof: 

Recall general solution to heat equation. First Fourier transform of the heat equation, converting 

it to an algebraic equation 

 

𝑢𝑡 = 𝑢𝑥𝑥 
 

1

√2𝜋

(

 
 
∫ 𝑢𝑡(𝑥, 𝑡)𝑒

−𝑖𝑥𝑝𝑑𝑥
∞

−∞⏟            

=
𝜕𝑢(𝑝,𝑡)
𝜕𝑡

= ∫ 𝑢𝑥𝑥(𝑥, 𝑡)𝑒
−𝑖𝑥𝑝𝑑𝑥

∞

−∞

= 𝑢𝑥𝑒
−𝑖𝑥𝑝|

−∞

∞

⏟      
0

+ 𝑖𝑝∫ 𝑢𝑥(𝑥, 𝑡)𝑒
−𝑖𝑥𝑝𝑑𝑥

∞

−∞

= 𝑖𝑝 𝑢𝑒−𝑖𝑥𝑝|
−∞

∞

⏟      
0

− 𝑝2∫ 𝑢(𝑥, 𝑡)𝑒−𝑖𝑥𝑝𝑑𝑥
∞

−∞⏟            
=𝑢(𝑝,𝑡)

)

 
 

 

 

So  

𝑢̂(𝑝, 𝑡) = 𝑢̂(𝑝, 0)𝑒−𝑝
2𝑡 

 

then inverse Fourier 

 

𝑢(𝑥, 𝑡) =
1

√2𝜋
∫ 𝑢̂(𝑝, 0)𝑒−𝑝

2𝑡𝑒𝑖𝑥𝑝𝑑𝑝
∞

−∞

 

When 𝑡 = 0, 
 

𝑢(𝑥, 𝑡 = 0) =
1

√2𝜋
∫ 𝑢̂(𝑝, 0)𝑒𝑖𝑥𝑝𝑑𝑝
∞

−∞

= 𝑢(𝑥, 0) 

 

Hence we verified 𝑢̂(𝑝, 0) = 𝐹[𝑢(𝑥, 0)]. Recall Fourier of a Gaussian is a Gaussian, and product 

of Fourier is convolution,  
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𝑢(𝑥, 𝑡) =
1

√2𝜋
∫

1

√2𝜋
∫ 𝑢(𝑥′, 0)𝑒−𝑖𝑥

′𝑝
∞

−∞

𝑑𝑥′𝑒−𝑝
2𝑡𝑒𝑖𝑥𝑝𝑑𝑝

∞

−∞

=
1

√2𝜋
∫ 𝑢(𝑥′, 0)

1

√2𝜋
∫ 𝑒−𝑝

2𝑡𝑒−𝑖(𝑥
′−𝑥)𝑝⏟          

𝑒 
−[𝑝√𝑡+

𝑖(𝑥′−𝑥)

2√𝑡
]

2

−
(𝑥′−𝑥)

2

4𝑡

∞

−∞

𝑑𝑝𝑑𝑥′
∞

−∞

=
1

√2𝜋
∫ 𝑢(𝑥′, 0)𝑒−

(𝑥′−𝑥)
2

4𝑡
1

√2𝑡

1

√𝜋
∫ 𝑒

−[𝑝√𝑡+
𝑖(𝑥′−𝑥)

2√𝑡
]

2
∞

−∞

𝑑(𝑝√𝑡)
⏟                    

1

𝑑𝑥′
∞

−∞

=
1

√2𝜋√2𝑡
∫ 𝑢(𝑦 − 𝑥, 0)𝑒

−
1
2

𝑦2

(√2𝑡)
2
 𝑑𝑦

∞

−∞

 

 

QED 

 

If lim
𝑚→∞

|𝑔|𝑚 < ∞, i.e. |𝑔| ≤ 1, solution is stable in time. Substitute this into above schemes, say, 

heat forward Euler, we get  

 

|𝑔| = 1 + 2𝜆(cos 𝜉Δx − 1) 
Hence stable for 𝜆 ≤ 1/2.  

 

 

If the same solution form 𝑦𝑛
𝑚 = 𝑔𝑚𝑒𝑖𝑛𝜉Δ𝑥 applied to transport forward Euler, we get  

 

|𝑔| = √1 + 𝜆2 sin2 𝜉Δx 
hence, unstable for all 𝜆. 

 

Substitute into transport implicit scheme 

|𝑔| =
1

√1 + 𝜆2 sin2 𝜉Δx   
 

 

Stable for all 𝜆. 

 

We know the analytic solution to transport equation is  

 

𝑦(𝑥, 𝑡) = 𝑓(𝑥 + 𝑡) 
That is  

 

𝑔 = 𝑒𝑖𝜉Δ𝑡 = 𝑒𝑖𝜉𝜆Δ𝑥 ≈ 1 + 𝑖 sin 𝜆𝜉Δ𝑥 
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3. Solve Ax=b 

Up to now we applied numerical algorithm in looping iterations. Contemporarily one should solve 

them simultaneously. Hence avoiding loops, and taking advantage of parallelism (Matlab, R’s 

native Fortran, C for matrix algorithms). Later we will write HPC code on our own. 

 

 2D Heat Equation 
Example: solve 2d heat (Laplace) equation, with periodic boundary condition 

 

Δ𝑢 = 𝑢𝑡 
 

𝑢𝑖,𝑗
𝑚+1 = 𝑢𝑛

𝑚 + 𝜆[ 𝑢𝑖+1,𝑗
𝑚 − 2𝑢𝑖,𝑗

𝑚 + 𝑢𝑖−1,𝑗
𝑚

⏟              
1𝐷 𝑓𝑜𝑟𝑤𝑎𝑟𝑟𝑑 𝐸𝑢𝑙𝑒𝑟 𝑖𝑛 𝑥−𝑎𝑥𝑖𝑠

+ 𝑢𝑖,𝑗+1
𝑚 − 2𝑢𝑖,𝑗

𝑚 + 𝑢𝑖,𝑗−1
𝑚 ]  

= 𝑢𝑛
𝑚 + 𝜆(𝑢𝑖±1,𝑗

𝑚 + 𝑢𝑖,𝑗±1
𝑚 − 4𝑢𝑖,𝑗

𝑚) 

 

by forward Euler. Create mesh Δ𝑥 = Δ𝑦 , 𝜆 = Δ𝑡/Δ𝑥2 < 1/2 , then to standardize matrix 

operations, we create vectors for 𝑢  

𝑢⃗ 𝑚 =

(

 
 
 
 
(
⋮
𝑢1,𝑗
𝑚

⋮

)

(
⋮
𝑢2,𝑗
𝑚

⋮

)

)

 
 
 
 

 

 

Then forward Euler becomes 

 

𝑢𝑚+1 = 𝐼 + 𝜆𝐿𝑢𝑚 

 

where 𝐿 = 

 
Picture courtesy http://people.eecs.berkeley.edu/~demmel/cs267/lecture24/lecture24.html  

This 𝐿 is a 16 × 16 matrix, but it only represents a spatial domain of 4 × 4. 

This shows the need for supercomputers because serial computers cannot handle  

spatial size like 103 × 103. Luckily the matrix is very sparse.  

http://people.eecs.berkeley.edu/~demmel/cs267/lecture24/lecture24.html
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If we used backward Euler, we would have to do inverse 𝐿. In sum we standardized the process of 

solving pde to tasks of finding eigenvalues, do matrix multiplications, and inverses. 

 

Here is how we create the Laplacian matrix (using sparse for optimization) in Matlab 

 
 
m = 4; n = m*m; 
 
e1 = ones(n,1);  e2 = e1; 
for j = 1:m 
    e2(m*j) = 0; 
end 
e3(1,1)=1; e3(2:n,1)=e2(1:n-1,1); 
 
L = spdiags([-1*e1 -1*e2 4*e1 -1*e3 -1*e1 ],[-m -1 0 1 m],n,n); 
spy(L)   
cond(L) 

 

 

 
Later we will show MPI implementation 

https://computing.llnl.gov/tutorials/mpi/samples/C/mpi_heat2D.c  

 

 Gaussian elimination, Sparse LU decomposition 
 

Gaussian ~𝑂(𝑁3) 
 

Matlab backslash  

 

𝐴𝑥 = 𝑏 => 𝑥 = 𝐴\𝑏 
 

It will optimize as follows. LU will be the worst case. 

http://www.mathworks.com/help/matlab/ref/mldivide.html#1002049  

https://computing.llnl.gov/tutorials/mpi/samples/C/mpi_heat2D.c
http://www.mathworks.com/help/matlab/ref/mldivide.html#1002049
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For sparse  
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 Other Iteration Methods for Special Matrix 
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- Jacobi / Gauss-Seidel Iteration for strictly diagonal dominance matrix 

 

|𝐴𝑖𝑖| > ∑|𝐴𝑖𝑗|

𝑗≠𝑖

 

 

for all 𝑖. Then Jacobi Iteration converges. 

 

It is ~ 𝑂(𝑁𝑆𝐾) 
𝑆 = sparse stencil, 𝐾 = # iterations 

 

- Generalized minimal residual method 

http://www.mathworks.com/help/matlab/ref/gmres.html?searchHighlight=gmres#syntax 

 
x = gmres(A,b) 

  

 

- Biconjugate gradient stabilized method 

http://www.mathworks.com/help/matlab/ref/bicgstab.html#syntax 
 
x = bicgstab(A,b) 
 

 

 

4. Spectral Method for PDE 

 Fast Fourier Transform (FFT) 
 

 𝑂(𝑁 log𝑁) 
 

Fourier Series 

 

Recall Fourier series on a domain [0, 𝐿] for periodic functions 

 

𝑓(𝑥) = ∑ 𝑐𝑛𝑒
𝑖
2𝜋𝑛𝑥
𝐿

+∞

𝑛=−∞

 

where  

 

𝑐𝑛 =
1

𝐿
∫ 𝑓(𝑥)
𝐿

0

𝑒−𝑖
2𝜋𝑛𝑥
𝐿 𝑑𝑥 

 

Recall Fourier in real form. On MatLab its Sine/cosine Transform (dst/dct) and their inverse 

(idst/idct),  

 

http://www.mathworks.com/help/matlab/ref/gmres.html?searchHighlight=gmres#syntax
http://www.mathworks.com/help/matlab/ref/bicgstab.html#syntax
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𝑓(𝑥) =
𝑎0
2
+∑𝑎𝑛 cos (

2𝜋𝑛𝑥

𝐿
) + 𝑏𝑛 sin (

2𝜋𝑛𝑥

𝐿
)

∞

𝑛=1

 

Where 

𝑎𝑛 =
2

𝐿
∫ 𝑓(𝑥)
𝐿

0

cos (
2𝜋𝑛𝑥

𝐿
) 𝑑𝑥, 𝑏𝑛 =

2

𝐿
∫ 𝑓(𝑥)
𝐿

0

sin (
2𝜋𝑛𝑥

𝐿
) 𝑑𝑥 

 

Their mapping is  

𝑐𝑛 =
𝑎𝑛
2
− 𝑖

𝑏𝑛
2
, 𝑛 ≥ 0, 𝑐−𝑛 = −𝑐𝑛

∗  

 

Or  

𝑎𝑛 = 2(𝑐𝑛 + 𝑐−𝑛), 𝑏𝑛 = 2(𝑐𝑛 − 𝑐−𝑛)𝑖 
 

so that 𝑐𝑛 is complex but 𝑓(𝑥) will be real. So to draw the Fourier of 𝑓(𝑥), just take the 

real/imaginary of 𝑐𝑛. Since the real sine/cosine Fourier is equivalent to the complex form, let us 

prove the complex form. 

 

Proof of Fourier: For 𝑚 ≠ 𝑛, let 𝑘 = 𝑚 − 𝑛, 

 

∫ 𝑒𝑖
2𝜋(𝑚−𝑛)𝑥

𝐿

𝐿

0

𝑑𝑥 = ∫ cos (
2𝜋𝑘𝑥

𝐿
) + 𝑖 sin (

2𝜋𝑘𝑥

𝐿
)

𝐿

0

𝑑𝑥 = 0 

 

QED 

 

Fourier Transform 

 

it doesn’t limit to periodic functions 

 

𝑓(𝑥) = ∫ 𝐹̂(𝑝)𝑒𝑖𝑝𝑥𝑑𝑝
∞

−∞

 

 

and 

𝐹̂(𝑝) =
1

2𝜋
∫ 𝑓(𝑥)𝑒−𝑖𝑝𝑥𝑑𝑥
∞

−∞

 

 

 

Proof: 

We need delta distribution 

 

𝛿(𝑥) =
1

2𝜋
∫ 𝑒𝑖𝑝𝑥𝑑𝑥
∞

−∞

= {
0 𝑥 ≠ 0
∞ 𝑥 = 0

 

 

It has property that 
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∫ 𝑓(𝑥)𝛿(𝑥)𝑑𝑥 = 𝑓(0)
∞

−∞

 

 

Now back to prove Fourier, substitute 𝐹̂(𝑝) into 𝑓(𝑥), we get 

 

∬ 𝑓(𝑦)𝑒𝑖𝑝(𝑥−𝑦)
∞

−∞

𝑑𝑝𝑑𝑦 = ∫ 𝑓(𝑦)𝛿(𝑥 − 𝑦)𝑑𝑦 = 𝑓(𝑥)
∞

−∞

 

 

QED 

 

Compare the proof of Fourier series and Fourier transform, we conclude they are two different 

animals.  

 

Discrete Fourier transform 

 

It is named “transform”, but in my opinion, it is misnamed. It is more close to Fourier series than 

to Fourier transform. I guess it is named because of its applications in solving PDEs. We use it 

like Fourier transform. 

 

𝑓(𝑥) = ∑ 𝐹̂(𝑛)𝑒𝑖
2𝜋𝑛𝑥
𝑁

𝑁−1

𝑛=0

 

and 

 

𝐹̂(𝑛) =
1

𝑁
∑ 𝑓(𝑥)𝑒−𝑖

2𝜋𝑛𝑥
𝑁

𝑁−1

𝑥=0

 

 

It is Fourier series with replacements of  

 
𝑥

𝐿
→
𝑥

𝑁
  and 

𝑑𝑥

𝐿
→
1

𝑁
   

 

That is because now 𝑥 is integer. What about its proof? 

 

Proof: First notice any non-zero integer 𝑘 ∈ [−(𝑁 − 1), (𝑁 − 1)]\{0}. Roots of unity or just 

Geometric series. 

 

∑ 𝑒𝑖
2𝜋𝑘𝑥
𝑁

𝑥∈[0,𝑁−1]

=
1 − 𝑒𝑖

2𝜋𝑘𝑁
𝑁

1 − 𝑒𝑖
2𝜋𝑘
𝑁

=
1 − 1

1 − 𝑒𝑖
2𝜋𝑘
𝑁

= 0 

 

Now substitute 𝑓(𝑥) into 𝐹̂(𝑚), 𝑚 ∈ [0,𝑁 − 1]. 
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𝐹̂(𝑚) =
1

𝑁
∑ 𝐹̂(𝑛)𝑒𝑖

2𝜋(𝑛−𝑚)𝑥
𝑁

𝑁−1

𝑥,𝑛=0

=
1

𝑁
∑ 𝐹̂(𝑚)

𝑥∈[0,𝑁−1]
𝑛=𝑚⏟          
𝐹̂(𝑚)

+
1

𝑁
∑ 𝐹̂(𝑛)

𝑛∈[0,𝑁−1]/{𝑚}

∑ 𝑒𝑖
2𝜋(𝑛−𝑚)𝑥

𝑁

𝑥∈[0,𝑁−1]⏟            
0

 

 

QED 

 

 

The proof provides an important inspiration for Fast Fourier Transform (FFT) 

 

Fast Fourier Transform (FFT) 

 

DFT says to Fourier 𝑓(𝑥) 

𝐹̂(𝑛) =
1

𝑁
∑ 𝑓(𝑥)𝑒−𝑖

2𝜋𝑛𝑥
𝑁

𝑁−1

𝑥=0

 

 

Blindly we see each 𝐹̂(𝑛) takes 𝑁 products so the complete Transform will be  

 

𝑂(𝑁2) 

 

 

 

Divide and conquer, split 𝑥 into even and odd 

 

𝐹̂(𝑛) =
1

𝑁
∑ 𝑓(2𝑥)𝑒

−𝑖
2𝜋𝑛𝑥
𝑁/2

𝑁
2
−1

𝑥=0⏟          
𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑜𝑓 𝑓(2𝑥)

𝑤𝑖𝑡ℎ ℎ𝑎𝑙𝑓 𝑜𝑓 𝑚𝑒𝑠ℎ 𝑠𝑖𝑧𝑒

+ 𝑒−𝑖
2𝜋𝑛
𝑁
1

𝑁
∑ 𝑓(2𝑥 + 1)𝑒

−𝑖
2𝜋𝑛𝑥
𝑁/2

𝑁
2
−1

𝑥=0⏟              
𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑜𝑓 𝑓(2𝑥+1)

𝑤𝑖𝑡ℎ ℎ𝑎𝑙𝑓 𝑜𝑓 𝑚𝑒𝑠ℎ 𝑠𝑖𝑧𝑒

 

 

Now we observe that  

 

𝐹̂ (𝑛 +
𝑁

2
) =

1

𝑁
∑ 𝑓(2𝑥)𝑒

−𝑖
2𝜋𝑛𝑥
𝑁/2

𝑁
2
−1

𝑥=0⏟          
𝑠𝑎𝑚𝑒 𝑎𝑠 𝑎𝑏𝑜𝑣𝑒

− 𝑒−𝑖
2𝜋𝑛
𝑁
1

𝑁
∑ 𝑓(2𝑥 + 1)𝑒

−𝑖
2𝜋𝑛𝑥
𝑁/2

𝑁
2
−1

𝑥=0⏟              
𝑠𝑎𝑚𝑒 𝑎𝑠 𝑎𝑏𝑜𝑣𝑒

 

 

Two for the price of one, 

𝑇(𝑁) = 𝑇 (
𝑁

2
) + 𝑂(1) → 𝑇 = 𝑂(log𝑁) 

 

 

Hence the complete transformation will be  
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𝑇(𝑁) = 𝑂(𝑁 log𝑁) 
 

  
 
FFT(f, N)   //first time call pass in f[0],f[1],…,f[N-1] 
 
     if N == 1, return f[0] 
 
     (F_even) = FFT(f[even], N/2)   
     //pass in even indices, return N/2 corresponding Fourier Coefficients  
 
     (F_odd)  = FFT(f[odd], N/2)    
     //pass in odd indices 
 
     let ANS = empty array size N 

     phase = 𝑒−𝑖
2𝜋

𝑁  
  
     for n = 0 to N/2-1 
            ANS[n] = F_even[n] + (phase^n) * F_odd[n] 
            ANS[n + N/2]  = F_even[n] – (phase^n) * F_odd[n] 
 
     Return ANS 

 

 

 

 
First diagram shows the three stages of computation and points dependence. Next butterfly 

pictures from http://cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html  

http://cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html
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What if the function is not periodic at boundary? 

 
  
L= 2;  n=128; 
 
x2 = linspace(-L/2, L/2, n+1);  x= x2(1:n); 
 
u=exp(x).*sin(5*x); 
ud=exp(x).*sin(5*x)+5*exp(x).*cos(5*x); 
 
 
k=(2*pi/L)*[0:(n/2-1) (-n/2):-1]; 
ut = fft(u);  udt = i*k.*ut;  udtt = ifft(udt);   
//here we applied convenient derivative 
 
plot(x, ud,'m', x, udtt,'go') 
title('1st derivative of exp(x)sin(x), o = FFT soln') 

 

 

 
 

Bad at boundary, b/c it tries to do periodic extension,  

which is called Gibbs phenomenon. Fourier solution bounds up and down. 

 

Next we study Chebyshev transform, which is very gentile at boundary. 

 

 

 Fast Chebyshev Transform  
 

 𝑂(𝑁 log𝑁) 
 

Orthogonal polynomials 

 

Let  
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〈𝑓, 𝑔〉 = ∫ 𝑓(𝑥)𝑔(𝑥)𝑊(𝑥)𝑑𝑥
𝑥2

𝑥1

 

 

be weighted inner product with 𝑤 ≥ 0 a.e. Then (𝑓, 𝑔)𝑤 = 0 ⟺ they are orthogonal 

 

Gram-Schmidt tells us that one can get an orthonormalized basis of polynomials by starting with 

1, 𝑥, 𝑥2, … 
 

 Legendre polynomials 

 

By letting 𝑤 = 1, 𝑥1 = −1, 𝑥2 = 1 

 

 Chebyshev polynomials 

By letting 𝑤 =
1

√1−𝑥2
, 𝑥1 = −1, 𝑥2 = 1 

𝑇𝑛(cos 𝜃) = cos 𝑛𝜃 
 

Gives uneven grids. 

 

 Hermite polynomials 

 

By letting 𝑤 = 𝑒−𝑥
2
, 𝑥1 = −∞, 𝑥2 = ∞ 

 

 Bessel polynomials 

 

By letting 𝑤 = 𝑥, 𝑥1 = 0, 𝑥2 = 𝑎 

 

∫ 𝑥𝐽𝑝 (𝑗𝑝𝑛
𝑥

𝑎
) 𝐽𝑝 (𝑗𝑝𝑚

𝑥

𝑎
) 𝑑𝑥 =

𝑎2

2
[𝐽𝑝+1(𝑗𝑝𝑛)]

2
𝛿𝑛𝑚

𝑎

0

 

 

 

Furthermore, let norm ‖𝑓‖𝑤
2 = (𝑓, 𝑓)𝑤. Then the best polynomial estimate 𝑝∗ of a given 

function  𝑓 is  

 

‖𝑓−𝑝∗‖𝑤
2 ≤ ‖𝑓 − 𝑝‖𝑤

2   ∀ 𝑝 ∈ 𝑃  
 

and clearly if use (any of the above) orthogonal basis {𝜙𝑖}, then 

 

𝑝∗ = ∑(𝑓, 𝜙𝑖)𝑤𝜙𝑖 
 

 

Chebyshev derivative matrix 
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http://ocw.mit.edu/courses/mathematics/18-336-numerical-methods-for-partial-differential-

equations-spring-2009/lecture-notes/MIT18_336S09_lec9.pdf 

 

Code was copied from Nathan Kutz  http://courses.washington.edu/amath581/581.pdf page 105-

108 

 
  
x=-1:0.01:1; 
u=exp(x).*sin(5*x); 
ux=exp(x).*sin(5*x)+5*exp(x).*cos(5*x); 
uxx=-24*exp(x).*sin(5*x)+10*exp(x).*cos(5*x); 
 
N=20; 
 
[D,x2]=cheb(N); %this return x2 \in [-1,1] 
u2=exp(x2).*sin(5*x2); 
u2x=D*u2; 
u2xx=D*u2x; 
 
subplot(3,1,1) 
plot(x,u,'k-',x2,u2, 'mo') 
title('exp(x)sin(x), o cheb soln') 
 
subplot(3,1,2) 
plot(x,ux,'k-',x2,u2x, 'mo') 
title('1st derivative of exp(x)sin(x), o cheb soln') 
 
subplot(3,1,3) 
plot(x,uxx,'k-',x2,u2xx, 'mo') 
title('2nd derivative of exp(x)sin(x), o cheb soln') 
 
%cheb.m% 
 
function [D,x]=cheb(N) 
if N<=0, D=0; x=1; return; end 
x=cos(pi*(0:N)/N)'; 
c=[2; ones(N-1,1); 2].*(-1).^(0:N)'; 

http://ocw.mit.edu/courses/mathematics/18-336-numerical-methods-for-partial-differential-equations-spring-2009/lecture-notes/MIT18_336S09_lec9.pdf
http://ocw.mit.edu/courses/mathematics/18-336-numerical-methods-for-partial-differential-equations-spring-2009/lecture-notes/MIT18_336S09_lec9.pdf
http://courses.washington.edu/amath581/581.pdf
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X=repmat(x,1,N+1); 
dX=X-X'; 
D=(c*(1./c)')./(dX+eye(N+1)); 
D=D-diag(sum(D')); 
 

 

 
10−8 accurate, cheb points do good job at boundary solves polynomial wiggle problem 

 

 

 Fast Multipole Method (FMM) 
 

Invent by Leslie Greengard (Former-NYU-Courant director) and Vladimir Rokhlin 

 

A thorough bibliography https://web.njit.edu/~jiang/math707.html   

 

The idea was borrowed from multipole expansion, monopole (~1/𝑟 ), dipole (1/𝑟2), … from 

electromagnetism.   

 

Recall we showed the solution to heat equation  

 

𝑢(𝑥, 𝑡) = ∫ 𝑢(𝑦 − 𝑥, 0)⏟      
𝑘𝑒𝑟𝑛𝑒𝑙

1

√2𝜋

𝑒
−
1
2

𝑦2

(√2𝑡)
2
 

√2𝑡⏟        
𝑤𝑒𝑖𝑔ℎ𝑡

𝑑𝑦
∞

−∞

 

 

This convolution form is very general as we proved it was from Fourier of product of algebraic 

equations. Many physical systems have this form. 

 

For numerical simulation (or numerical animation if allow 𝑡 to grow), one will probably create a 

2d heat map (assume above 𝑥, 𝑦 are 2d), and compute  

 

https://web.njit.edu/~jiang/math707.html
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𝑢(𝑥, 𝑡) =∑𝐾(𝑥, 𝑦)

𝑦

𝑤(𝑦, 𝑡) 

 

for every 𝑥 on the grid. Then just like in DFT, blindly one has to do  

 

𝑂(𝑁2) 
 

The idea of FMM is to play with the kernel. Because by physical intuition, if 𝑦 − 𝑥 ≫ 1, the 

value of 𝑢(𝑦 − 𝑥, 0) should not vary too much from the point of view of 𝑥, when computing 

𝑢(𝑥, 𝑡) = ∑ 𝐾(𝑥, 𝑦)𝑦 𝑤(𝑦, 𝑡), we change the number of grids, the farther we go, the less grids 

are there. In fact we organize the grids like a binary tree 

 

 
Picture from http://math.nyu.edu/faculty/greengar/shortcourse_fmm.pdf page 8 

 

For example we want to find 𝑢(𝑥 = 0.55, 𝑡), then we compute the sum, for 𝑦 points in [3/8, 3/4], 

we do one by one counts. For 𝑦 points in [1/4, 3/8], 𝑦 ∈[4/3, 7/8], [7/8,1] are treated as one 

point, and points in [0, 1/4] are created as one point. So we reduce 𝑁 sums to log 𝑁 sums, thus  

 

𝑂(𝑁 log𝑁) 
 

The initial construction of the binary tree is the key. It defines the accuracy of the computation.  

  

 Other Transforms 
 

Zak transform 

𝑍𝑎[𝑓](𝑡, 𝑤) = √𝑎 ∑ 𝑓(𝑎𝑡 + 𝑎𝑘)𝑒−2𝜋𝑘𝑤𝑖
∞

𝑘=−∞

 

 

 

Wigner Ville Distribution 

 

𝑊𝑥(𝑡, 𝑤) = ∫ 𝑥 (𝑡 +
𝜏

2
) 𝑥∗ (𝑡 −

𝜏

2
) 𝑒−𝑖𝑤𝜏𝑑𝜏

∞

−∞

 

 

Wavelets  

 

Mexican hat 

http://math.nyu.edu/faculty/greengar/shortcourse_fmm.pdf%20page%208
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𝜓(𝑡) =
2

√3𝜎𝜋
1
4

(1 −
𝑡2

𝜎2
) 𝑒

−
𝑡2

2𝜎2
 
 

 

http://mathworks.com/help/wavelet/ref/wfilters.html?refresh=true#zmw57dd0e43152 

 

 

[𝑊𝜓𝑓](𝑎, 𝑏) =
1

√|𝑎|
∫ 𝜓∗ (

𝑥 − 𝑎

𝑎
) 𝑓(𝑥)𝑑𝑥

∞

−∞

 

 

a = dilation, b = translation  

 

 

The Present: High Performance Computing 
5. PRAM Model 

 Brent’s Theorem 
Given 𝑃 processors, 𝑛 data, think 𝑊(𝑛) total number of work per data point as the total number 

nodes of a directed acyclic graph (DAG) and span, 𝐷(𝑛),= the longest (critical) path, the unit 

time to execute 

 
𝑊 −𝐷

𝑃
+ 𝐷 ≥ 𝑇𝑝(𝑛) ≥ max {𝐷(𝑛), ⌈

𝑊(𝑛)

𝑃
⌉} 

 

Above assume each work takes same 𝑂(1) time.  

 

Proof of the upper bound: 

Breaking 𝑊 to 𝐷 different phases, the critical path will pass through the phases and leaving one 

critical node and 𝑊𝑘 concurrent works, i.e. ∑𝑊𝑘 = 𝑊. That is 

 

𝑇𝑝(𝑛) = ∑ ⌈
𝑊𝑘(𝑛)

𝑃
⌉

𝐷(𝑛)

𝑘=1

≤ ∑
𝑊𝑘(𝑛) − 1

𝑃
+ 1 =

𝑊 − 𝐷

𝑃
+ 𝐷

𝐷(𝑛)

𝑘=1

 

 

Define  

𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚 =
𝑊(𝑛)

𝐷(𝑛)
 

In terms of directed acyclic tree, assume all process 

  

The speedup achieved  

 

𝑆𝑃(𝑛) =
𝑏𝑒𝑠𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒 𝑇𝑠(𝑛)

𝑇𝑝(𝑛)
 

http://mathworks.com/help/wavelet/ref/wfilters.html?refresh=true#zmw57dd0e43152
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If we want 𝑆𝑃(𝑛) to be linear in 𝑃, we get Amdahl's law 

 
𝑇𝑠
𝑇𝑃
≤

𝑇𝑠
𝑊 −𝐷
𝑃 + 𝐷

=
𝑃

𝑊
𝑇𝑠
+
𝑃 − 1
𝑇𝑠/𝐷

 

 

Hence we want the denominator to be order 1, which implies 

 

Work-optimality  

 

𝑊 = 𝑂(𝑇𝑠) 
 

Weak-scalability 

𝑃 = 𝑂 (
𝑇𝑠
𝐷
) 

 

First taste of parallel algorithm 

 
  

def reduceSum(list) 
 
        ‘’’ find sum of list ‘’’ 
 
  if len(list) == 1: return list[0] 
  A = spawn reduceSum(list[ : n / 2]) 
  B = reduceSum(list[ n / 2 + 1 : ]) 
  sync // wait spawn finishes, then do sum 
  return A + B 
 

 

A Library of Parallel Algorithms, http://cs.cmu.edu/~scandal/nesl/algorithms.html  

Parallel Algorithms from Microsoft, https://msdn.microsoft.com/en-us/library/dd470426.aspx  

 

 Parallel Loop 
 

 
 def parFor(foo, a, b)     
 
       ‘’’  foo is some function. Argument of foo is current iterator,  
       ‘’’  a, b are starting and ending range of the cursor.  
 

 let n = b – a + 1  
 if n == 0: return foo(a) 
 let m == a + n / 2  
 spawn parFor(foo, a, m-1)   //split in half 
 parFor(foo, m, b)           //the second half 
 sync   

 

http://cs.cmu.edu/~scandal/nesl/algorithms.html
https://msdn.microsoft.com/en-us/library/dd470426.aspx
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Above algorithm has  

 

𝐷(𝑛) = 𝑂(log 𝑛) 
 

Notice we don’t do this  

 
  

 for i in range(a,b + 1): 
        spawn foo(i)   
 

 

Because above serial for-loop will still push foo to the stacks 𝑛 times, i.e. assume the time 

complexity of foo is < 𝑂(𝑛),  then overall span is still 

 

𝐷(𝑛) = 𝑂(𝑛) 
not good. 

 

Example 

𝑦 = 𝑦 + 𝐿𝑥 
 

 
 parFor i = range(n) 
  t = [0]*n 
  parFor j = range(n) 
   t[i] = L[i,j] * x[j] 
 //after loop sync is implicitly called 
  y[i] = y[i] + reduceSum (t) 
 

 

The span of above is 𝐷(𝑛) = 𝑂(log 𝑛) 
 

We can simplify above. It works the same because Python or Fortran will automatically invoke 

parallelism for pair multiplication when index slicing/bundle notation is involved,  

 
  
 parFor i = range(n)  
  y[i] = y[i] + reduceSum (L[i,:] * x[:]) 
 

 

 

 Parallel Sort 
 

Bitonic Sorting 
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Picture curtesy  https://en.wikipedia.org/wiki/Bitonic_sorter  

 

A bitonic sequence is increasing than decreasing, having larger values clustering in the middle 

and smaller values by the sides. Read above graph from left to right. The arrows are 

comparators. Up arrows indicated that sending smaller values on top; downward arrows 

indicated putting larger values on top. In the first column we applied arrows to 8 pairs to data, 

we got 4 4-element bitonic sequences. Next we applied sorting to each 4-element bitonic 

sequence in 2 steps. First compared 1st and 3rd, and compared 2nd and 4th. This resulted the 

bitonic sequence to split into two groups. Every element of one group was larger than the other 

group. In the second step we sorted the two groups, so we got 2 8-element bitonic sequences. 

Next we applied sorting to each 8-element bitonic sequence in 3 steps, and we merged them into 

1 16-element bitonic sequence, then we applied sorting to it. 

 

Proof of the split algorithm resulting two separated groups, one of which is larger than the other. 

 

 
After splitting, we pick an arbitrary element 𝑥 from group 2. We show 𝑥 > group 1. Clearly 𝑥 is 

larger than its counter part 2nd element in group 1. 𝑥 is also larger than any element to the left of 

the 2nd element in group 1 because of the following. 

 

Case 1 suppose before splitting, 𝑥 was in group 2. So the original 2nd element was in group 1, 

then any element left to the 2nd element was originally smaller than 𝑥,  hence they were smaller 

than any elements to the left of 𝑥 from group 2, so none of them would get switched during 

splitting, so they are still smaller than 𝑥.  

 

Case 2, suppose 𝑥 was in group 1. Then 𝑥 was larger than any element to its left in the original 

group 1. After splitting, those elements can only get smaller, so they are still smaller than 𝑥. 

 

Similarly, one can prove that 𝑥 is larger than any element to the right of 2nd element in group 1.  

QED 

 

https://en.wikipedia.org/wiki/Bitonic_sorter
https://en.wikipedia.org/wiki/File:BitonicSort1.svg
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The serial complexity is not impressive 

 

𝐷(𝑛) = 𝑂(log2 𝑛),𝑊(𝑛) = 𝑂(𝑛 log2 𝑛) 
 

However its parallel implementation is impressive. 

 

Parallel Algorithm for Bitonic Sorting 

 
  
 def bitonicSplit(A[0 : n - 1]) 

//assume 2 | n 
  parFor i = range(n / 2) 
   a = A[i] 
   b = A[i + n / 2] 
   (A[i], A[i + n / 2]) = (a , b)  
 
 def bitonicMerge(A[0 : n - 1]) 
  if n >= 2 //assume 2 | n 
   bitonicSplit(A[:]) 
   bitonicMerge(A[0 : n / 2 - 1]) 
   bitonicMerge(A[n / 2 : n - 1]) 
 
 def generateBitonic(A[0 : n - 1]) 
  if n >= 2 // assume 2 | n 
   spawn generateBitonic(A[0 : n / 2 - 1]) 
   generateBitonic(A[n / 2 : n - 1]) 
   sync  
   spawn bitonicMerge(A[0 : n / 2 - 1]) 
   bitonicMerge(A[n / 2 : n - 1]) 
 
 def bitonicSort(A[0 : n - 1]) 
  generateBitonic(A[:]) 
  bitonicMerge(A[:]) 
 

 

Parallel QuickSort 

 
  
def QS(A[0 : n - 1]) 
  if n == 1:  return A[0] 
  pivot = A[random.randrange(0 , n)] 
  L = A[A[:] <= pivot] 
  R = A[A[:] > pivot] 
  AL = spawn QS(L) 
  AR = QS(R)  
             sync 
  return AL + AR 
 

 

 

In fact Fortran, python will perform parallelism behind  
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   L = A[A[:] <= pivot],   R = A[A[:] > pivot] 

 

Call Parallel Scan 

 

𝐷(𝑛) = 𝑂(log2 𝑛),𝑊(𝑛) = 𝑂(2𝑛) 
 

  
F[0 : n-1] = [0] * n 
F[:] = (A[:] <= pivot)   //this is clearly parallel 
K[:] = addScan(F[:]) //cumulative sum parallel 
m = K[n - 1] 
L[0 : m - 1] = [0] * m 
parFor i = range(n) 
          if F[i] == 1:  L[K[i]] = A[i] 
//finish L 
 
def addScan(A[0 , n - 1])  //assume n = 2^a 
           if n == 1:  return A[0] 
           IO[0 , n / 2 - 1] = range(1, n , 2)  //odd indices 
           IE[0 , n / 2 - 1] = range(0, n , 2)  //even indices 
           A[IO] = A[IE] + A[IO] // pairwise additions 1st + 2nd; 3rd + 4th 
elements parallel 
           A[IO] = addScan(A[IO]) 
           A[IE] = A[IE[1:]] + A[IO[1:]]  
  

 

 

 Parallel Linked List 
 

To parallelize it, we need random access. First we hash and store linked list to an array pool.  

 

Let 𝑉[. ] = array of the value of the linked list and the indices of 𝑉 are the keys. It may contain 

unused cells. Remember the index position of the head. 

Let 𝑁[. ] = a parallel array of 𝑉[. ]. Its indices are in the same order of 𝑉[. ] and its values are the 

key to the next node of the linked list points to. For unused cells of 𝑉[. ], their corresponding 

values in 𝑁[. ] should set to be NULL. 

 

For example, suppose the current pointer of the linked list points to address whose hash key is 

𝑖 = 13. Then its value in the linked list is  

𝑉[13] 
The next node has key 𝑁[13], so the value of the next node is 

𝑉[𝑁[13]] 
  

Linked List Rank Algorithm (Wyllie) 

 

First set every node to 1, then use parallel cumulative sum, which follows the same idea in 

addScan for parallel quicksort. 
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To do parallel sum, first do 2 pair neighbor sum, than use jump to connect the node to its 

previous-previous node and add it to the node, hence it’s the sum of 4 consecutive neighbors, 

then jump again to its previous-previous-previous-previous and add it to the node, and etc. 

 

With a little twist, we can get parallel access to say, the 100th node. Just stop the program when 

rank reaches 100. 

 
  
 def updateRanks(Rin, Rout, N) 
        // 2-pair neighbor sum in parallel 
        parFor i in range(n): 
                 if N[i] != NULL: Rout[N[i]] = Rin[i] + Rin[N[i]]   
 
 def jumpList(Nin, Nout): 
        // jump to next next node 
        parFor i in range(n) 
                 if Nin[i] != NULL: Nout[i] = Nin[Nin[i]]  
 
 def swap(A,B) 
        (A,B) = (B,A)          
 
 
 def rankList(V[], N[], h) //h=head  
        let R1[0 : n - 1] = R2[0 : n - 1] = [1] * n 
        let N1[0 : n - 1] = N2[0 : n - 1] = N[]  //make two copies 
         
        for i in range(log(n) + 1):  
                 updateRanks(R1,R2,N1) // R2 gets modified 
                 if i == log(n):  return R2 
                 jumpList(N1,N2)       // N2 gets modified   
                 swap(R1,R2) 
                 swap(N1,N2)   
           
   

 

The work and span of parallel linked list algorithm is 

 

𝑊(𝑛) = 𝑂(𝑛 log 𝑛), 𝐷(𝑛) = 𝑂(log𝑛) 
 

Its works are not linear as in serial case. There is a tradeoff between work-optimal and run-time-

optimal. There is a so called work-optimal list scan algorithm that will reduce 𝑊 to 

 

𝑊(𝑛) = 𝑛 log log 𝑛 

 

Work-optimal Linked List Rank Algo 

 

- shrink the list to size 𝑚 = 𝑂 (
𝑛

log𝑛
) via independent set 

 - find just an independent set, not the max indep set! 
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 - an independent set is a set that no two elements are directly linked together 

 - remove each element in the independent set from the list and add its current rank to its 

successor. So basically we preprocess the list and do some cumulating sum on the fly. 

Everything will be in parallel. That is why we require independent sets, not to remove two linked 

nodes all together in one concurrent time. 

 - keep doing that till the list become size 𝑂 (
𝑛

log𝑛
) 

- run Wyllie on the shrinked list 𝑊(𝑛) = 𝑂(𝑚 log𝑚)~𝑂(𝑛) 

- restore the full list. 

 - Clearly those removed elements don’t have ranks. To restore them, we will run 

backward of the removal steps. Get back their ranks from their remaining successors. 

 

How to parallel find an independent set? 

 
 
 def parIndSet(N[:]) 
 
        ‘’’ N is defined before, The array of the key of the next node 
        ‘’’ return the indices of indep set  
        C1 = array of random bool of size len(N) 
        C2 = C1  // copy 
 
        parFor i = range(len(N)) 
                 if (C1[i] == True) and (N[i] != NULL) and (C1[N[i]] == True): 
                            C2[i] = False 
 
        return C2[i]  // index of True is the independent set. 
 

 

How many times 𝑘 do we have to run to shrink the list down to 𝑂 (
𝑛

log𝑛
) ? About half of them 

get assigned TRUE and about ¼ of total get assigned to have its next node is also TRUE, so each 

time ¼ of total becomes independent set, i.e. 

 

(
3

4
)
𝑘

𝑛 ≈
𝑛

log 𝑛
→ 𝑘 = 𝑂(log log 𝑛) 

 

So the total Work of work-optimal linked list algo 

 

𝑊 = 𝑂(𝑛 log log 𝑛) 
 

 Parallel Tree 
 

We linearize tree via some traversal and we get Euler Tour Tree 

 

Example: Convert a binary tree to double linked list 
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  node bTreetoDLL(node root): 
 
             ‘’’ in-order traversal 
  
             if root.left == NULL and root.right == NULL 
                         return root 
             if root.left != NULL 
                         pt1 = bTreetoDLL(root.left) 
                         root.left = pt1;  pt1.right = root 
             if root.right != NULL 
                         pt2 = bTreetoDLL(root.right) 
                         root.right = pt2;  pt2.left = root                    
 

 

  
Picture from Rich Vuduc, High Performance Computing, Udacity lecture 1-5 

 

From edge (0,1) → (1,4) → (4,1) → (1,5) → (5,1) → (1,6) → (6,7) → (7,6) → (6,8) →
(8,6) → (6,1) → (1,0) → (0,2) → (2,0) → (0,3) → (3,0) → (0,1) 
 

The map is  

 

𝑆(𝑈𝑖(𝑉), 𝑉) = (𝑉, 𝑈(1+𝑖)𝑚𝑜𝑑 𝑑𝑉(𝑉)) 

 

Where 𝑉’s are the vertices, and 𝑈𝑖(𝑉)’s are the immediate neighbors of 𝑉, enumerated by 𝑖. 
 

Proof  

 

If 𝑑𝑉 = 1, like node 4, then going into vertex 4 has to come out of vertex 4, i.e. 

 

𝑆(1,4) = (4,1) 
Indeed  

 

𝑆(𝑈0, 𝑉) = (𝑉, 𝑈1 𝑚𝑜𝑑 1) = (𝑉, 𝑈0) 
 

If 𝑑𝑉 > 1, then (1 + 𝑖) 𝑚𝑜𝑑 𝑑𝑉 will rotate all its children and in the end it will return back to the 

first path going into the vertex. QED 

 

http://udacity.com/course/high-performance-computing--ud281
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With the map, we can create linear circular linked list in parallel out of tree, thus the parallel 

algorithms for linked list become applicable. 

 

 Parallel Graph 
 

We know sequential BSF 

𝑊 = 𝑂(|𝑉| + |𝐸|) 
 

Now we do parallel. Recall in sequential, we used a queue to pipe nodes. Now we want to use 

one list for each depth 𝑑, within each depth we can do parallel and cross visits should not be an 

issue. 

  
  
 def level_sync_BSF(G = (V,E), s) //s = starting vertex 
         
        ‘’’ along the way, we find the depth of node ‘’’ 
 
        D[V-s] = -1; //label of the depth of each node 
        F[0] = [s]; // first level 
        d = 0 
        while F[d] not empty 
              F[d+1] = [] 
              processLevel(G, F[d], F[d+1], D) 
              d++ 
        return D         
 

 

We will use binomial heap as bag data structure, but we don’t need to force smaller numbers on 

top as required by the heap. The reason we use such bag structure is because adding and splitting 

are 𝑂(log 𝑛). Recall binomial heap is an array with pointers to pennants. 

 

 
Picture from http://courses.csail.mit.edu/6.884/spring10/labs/lab4.pdf page 4 

 

Adding two pennants of same size or splitting a pennant to two equal size is 𝑂(1). Therefore 

splitting a bag is just to split pennants and travel down the array to find non-occupied cells.   

 
  
 def processLevel(G=(V,E), F[d], F[d+1], D): 
         if |F[d]| > cutoff 
                 (A,B) = bigSplit(F[d])    // log(n) 
                 spawn processLevel(G, A, F[d+1], D)  
                 processLevel(G, B, F[d+1], D) 

http://courses.csail.mit.edu/6.884/spring10/labs/lab4.pdf
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                 sync 
         else 
                 for v in F[d] 
                          parFor (v,w) in E 
                                if D[w] = -1 then 
                                           D[w] = d + 1 
                                           bagAdd(w)    //log(n) 
     

 

So the total span  

𝐷(𝑛) = 𝑂(𝑑 log𝑟(|𝑉| + |𝐸|)) 
 

6. Distributed Memory Model 

 Message-Passing Model 
 

It is called because all nodes’ memories are private. Sharing data have to be sent over networks. 

Each node knows how many nodes are there in the network and everybody’s ID (rank).   

 

We assume 

 

- the networks are fully connected, for now ignoring the network topology, assume sending or 

receiving between any two nodes takes same amount of time.  

- links are bidirectional; allow sent and receive 

- Each node can do only one send + one receive at a time 

- cost to send or receive 𝑛 words 

 

𝑇𝑚𝑠𝑔(𝑛) = 𝛼 + 𝛽𝑛 

 

where 𝛼 = latency, typical 10−6𝑠𝑒𝑐, 𝛽 = 1 / bandwidth, which has the unit of time / words, 

typical 10−9𝑠𝑒𝑐, compared to operation time 10−12𝑠𝑒𝑐 (Typical CPU 3.5GHz, i.e. it times 3.5 ×
109 clock cycle in 1 sec, 4 cores, 64 floating points. Altogether it gives 1.1 × 10−12 sec/per 

operation -- Mind-blowing!).  

 

- if there are 𝑘 messages are using the same segments of the network, called 𝑘-way congestion 

 

𝑇𝑚𝑠𝑔(𝑛) = 𝛼 + 𝑘𝛽𝑛 

 

How are two nodes sending or receiving?  

Called point-to-point communication, later we will do one-to-all and all-to-all communications. 

 

Single Program Multiple Data (SPMD) 

 

2-sided messaging: node A sends stuff to node B 

 

Machine A 
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 // create a separated event to listen 
 handle <- sendAsync(buffer[1:n], B)   
         //buffer are the content to be send; A knows B’s rank 
 
… //do other stuff 
   
 wait(handle)  //or blocking wait till handle completes 
 
//The handle will not complete if there is not a B out there awaiting for the 
//message. Depend on the implementation if it returns handled event, it means 
//most likely B has received, not 100%, but for sure the buffer is cleared. 

 

Machine B needs to have a receiving event. For a signal to go through both ends of the wire have 

to open. 

 
 
handle <- recvAsync(buffer[1:n], A)   
         //buffer are the content for receive to write to 
 
  //if handle return handled event, it means B has received. 

 

 Distributed Operations 
 

First taste of distributed computation: All-to-one reduceSum 

 

Run the follow code to all machines 

 
 
 ‘’’ add values of all nodes and store the sum to rank = 0 node ‘’’  
 ‘’’ s = the value to sum  
 ‘’’ P = total nodes  
 ‘’’ rank = its own id  
  
 bitmask <- 1 
 while bitmask < P  
         Partner <- rank ^ bitmask  //bitwise XOR 
          //when bitmask = 0000000 1⏟

𝑏𝑡ℎ

0000,  

          //XOR connects rank and its partner have same bits except the bth  
 
         if rank & bitmask //bitwise AND, so only nodes that has 1 on bth  

                    sendAync(s, Partner) 
                    wait(*) 
                    break   //once it sent, its task is done   
 
         elif (Partner < P)  
                    receAync(t, Partner) 
                    wait(*) 
                    s += t 
         bitmask <- (bitmask << 1)  //bitwise shift, basically *2 
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  if rank == 0 
         print “DADA: ” + s 
 

 

All-to-One Reduce 

 

More general if 𝑠 is vector of size 𝑛, sum component-wise using above algorithm, time is  

 

𝑇(𝑛) = (𝛼 + 𝛽𝑛) log 𝑃 
 

This operation reduces information from all nodes to one node. Its standard API is 

 

𝑟𝑒𝑑𝑢𝑐𝑒(𝐴𝑙𝑜𝑐𝑎𝑙[1: 𝑛], 𝑟𝑜𝑜𝑡) 
 

Each node calls 𝑟𝑒𝑑𝑢𝑐𝑒 and each node except the root send its 𝐴 to 𝑟𝑜𝑜𝑡. 
 

One-to-All Broadcast 

 

Copy the same 𝑛 data from one node to all nodes. Its standard API is 

 

𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡(𝐴𝑙𝑜𝑐𝑎𝑙[1: 𝑛], 𝑟𝑜𝑜𝑡) 
 

Each node calls 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 and only root does the sending. 

 

Implementation of One-to-All Broadcast 

 

Root (suppose its rank 0) sends 𝐴 to rank 1, then rank 0, 1 send to 2, 3 nodes, then 0-4 nodes 

send to 5-8 nodes. Thus  

  
𝑇(𝑛) = (𝛼 + 𝛽𝑛) log 𝑃 

 

All-to-One Gather  

 

Its standard API is 

 

𝑔𝑎𝑡ℎ𝑒𝑟(𝐼𝑛[1:𝑚], 𝑟𝑜𝑜𝑡, 𝑂𝑢𝑡[1:𝑚][1: 𝑃]) 
 

Each nodes calls 𝑔𝑎𝑡ℎ𝑒𝑟 and each except the root sends its local In buffer, array of data size 

𝑚 to the root. The 𝑂𝑢𝑡[1:𝑚][1: 𝑃] only works for the root. The root will receive the messages 

from each node and store them into the 2 dimensional array, Out buffer. The total size of the 

transmitted data is  

𝑛 = 𝑚𝑃 
 

One-to-All Scatter 

 

Reverse of All-to-One Gather   
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𝑠𝑐𝑎𝑡𝑡𝑒𝑟(𝐼𝑛[1:𝑚][1: 𝑃], 𝑟𝑜𝑜𝑡, 𝑂𝑢𝑡[1:𝑚]) 
 

 

 

All-Gather 

 

𝑎𝑙𝑙𝐺𝑎𝑡ℎ𝑒𝑟(𝐼𝑛[1:𝑚], 𝑂𝑢𝑡[1:𝑚][1: 𝑃]) 
 

will do part of All-to-One Gather and duplicate the root to all notes. It is kind like All-to-One 

Gather followed by One-to-All Broadcast.  

 
  
 gather(In, out, root) //root is the receiver 
 broadcast(reshape(Out), root) //root is the sender 
       //reshape is changing 2-d array to 1-d 
       //reshape is only a logic operation, because in C, matlab 2-d array 
       //is physically stored as 1-d array, so the operation is 𝑂(1).  

 

 

Reduced Scatter 

 

Reverse of All-Gather 

 

𝑟𝑒𝑑𝑢𝑐𝑒𝑆𝑐𝑎𝑡𝑡𝑒𝑟(𝐼𝑛[1:𝑚][1: 𝑃], 𝑂𝑢𝑡[1:𝑚]) 
 

Lower Bound 

 

We see that above operations have one thing in common. There is at least one node who either 

receive or send message from or to all other nodes. Since it can only receive or send one piece of 

data at a time so the latency is in its best to be in parallel, so 𝛼 log𝑃 + 𝛽𝑛 is the best we can do. 

This gives the lower bound  

 

𝑇(𝑛) = Ω(𝛼 log 𝑃 + 𝛽𝑛) 
 

where 𝑛 is total data being received or sent. We now show one-to-all scatter attain the minimum. 

 

Just like the implementation of broadcast. Root (rank = 0) sends 𝐼𝑛[1:𝑚][1: 𝑃/2] to rank 1 

node. Then in parallel 0 node sends 𝐼𝑛[1:𝑚][𝑃/2 + 1: 3𝑃/4] to rank 𝑃/2 and rank 1 node sends 

its half of the 𝐼𝑛 buffer to some other node,  

 

𝑇(𝑛) = 𝛼 log 𝑃 + 𝛽 ∑
𝑛

2𝑖

log𝑃

𝑖=1

= 𝛼 log 𝑃 + 𝛽𝑛(
1 −

1
2𝑝

1 −
1
2

− 1) 
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Notice before we discussed that All-Gather was like All-to-One Gather followed by One-to-All 

Broadcast, but All-to-One Gather attained the minimum while One-to-All Broadcast did not. So 

the overall time is still 

 

𝑇(𝑛) = (𝛼 + 𝛽𝑛) log 𝑃 
 

Let us try a new approach to implement All-Gather, bucketing/pipeline and former approach is 

like tree.  

 

- each node sends 𝐼𝑛[1:𝑚] to its next node (𝑟𝑎𝑛𝑘 + 1) 𝑚𝑜𝑑 𝑃.  

- each node sends the new messages it just received from (𝑟𝑎𝑛𝑘 − 1) 𝑚𝑜𝑑 𝑃 and passes it to 
(𝑟𝑎𝑛𝑘 + 1) 𝑚𝑜𝑑 𝑃. 

- do this for 𝑃 times. 

 

Overall run time is  

 

𝑇(𝑛) = (𝛼 + 𝛽𝑚)𝑃 = 𝛼𝑃 + 𝛽𝑛 
 

Compare these two approaches, we see that the new approach is bandwidth optimal, because 

when the message size is very large, the bandwidth term dominates 

 

𝑎𝑃⏟
~0

+ 𝛽𝑛 ≪ 𝑎 log𝑃⏟  
~0

+ 𝛽𝑛 log𝑃 

 

This also suggests that there may be a bandwidth-optimal approach to One-to-All Broadcast so 

its run time can get down from (𝛼 + 𝛽𝑛) log 𝑃 to (𝛼𝑃 + 𝛽𝑛). Indeed One-to-All Broadcast can 

be thought of one-to-all scatter followed by All-Gather.  

 

 Distributed Network Topology 
 

Physical networks are not fully connected. So the physical run time is different from the ideal 

model we discussed above. The one thing characterizes the most is the bisection bandwidth, 

which is the minimal number of links to be taken out in order to separate the network into two 

disconnected components. For example  

 

 
Picture from https://nanohub.org/courses/ECE695R/o1a/asset/11112 page 5 

https://nanohub.org/courses/ECE695R/o1a/asset/11112%20page%205
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Because most parallel codes are done in splitting processors in half, we see from the two graphs 

above the ring network bisection bandwidth is 8 times smaller than a full connected (ideal) 

network, so we should expect for ring network the run-time bandwidth is roughly 8 times slower, 

𝛽 → 8𝛽.   

 

Of course it also depends heavily on the algorithm. For example, the All-Gather implementation 

we discussed before will work equally well for the ring and fully connected networks, because in 

the All-Gather implementation messages are passed in circles. Each node only talks to the nodes 

in front and in behind of it. 

So to do an algorithm specific analysis of the network, we need to map the logical networks (the 

routes that are used in passing data) to the physical network. The ratio of the available number of 

paths to in the logical network to the physical network is called the congestion 𝑘. E.g. in the 

graph above if all the cut-out bisection paths are involved in the logic, then 𝑘 ≥ 8.   

 

In sum  

 

 Diameter  Bisection Num of links 

Full-connected 
1 

𝑃2

4
 

𝑃(𝑃 − 1)

2
 

Complete binary tree 
2 log

𝑃 + 1

2
 1 𝑃 − 1 

Ring 𝑃

2
 2 𝑃 

Hypercube 
log 𝑃 

𝑃

2
 𝑃 log𝑃 

d-D Tours (d-mesh with 

connect bdary of the 

opposite side) 

𝑑

2
𝑃
1
𝑑 2𝑃

𝑑−1
𝑑  𝑑𝑃 

Butterfly (e.g. see FFT) log 𝑃 𝑃 𝑃 log𝑃 

 

 

 Distributed Matrix Multiplication 
We want to solve 

𝐶𝑚𝑛 = 𝐶𝑚𝑛 + 𝐴𝑚𝑘𝐵𝑘𝑛 
 
Adding C to itself is just because we are doing it in parallel. It is better to create a 𝐶 at the 

beginning with all 0 entries as a place holder. 

 

𝑐𝑖𝑗 = 𝑐𝑖𝑗 +∑𝑎𝑖𝑙𝑏𝑙𝑗

𝑘

𝑙

 

 

First let us review what if it is done in parallel 
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 parFor i = range(m) 
         parFor j = range(n) 
                  T = [0] * k 
                  parFor l = range(k) 
                            T[l] = A[i,l] * B[l,j] 
                  C[i,j] += reduceSum(T)  
 

 

Total work and spin 𝑛~𝑚~𝑘 

𝑊 = 𝑂(𝑛3), 𝐷 = log 𝑛 
 

Now we do it in distributed memory machines 

 

1-D Algorithm 

 

Use circular network. Each node stores 
𝑛

𝑃
 rows of the matrice 𝐴, 𝐵, and 𝐶.  So for any node, it has 

the necessary data of 𝐴 to compute its responsible portion of 𝐶, but it lacks portion of 𝐵. We 

know 1-D network is efficient at circular shuffling. Here is code to be executed on each node 

 
  
 Let A0, B0, C0 = local part of A, B, C 
 Let B1 = temp storage 
 for i = range(P)  
        sendAsync(B0, next_node) 
        recvAsync(B1, prev_node)  
        C0 += A0 * B0 // part of rows of A * part of column B   
        wait(*) 
        swap(B0, B1) 

  

There are 𝑃 rounds of communications and during each round each node sends 𝑛 ∗ 𝑛/𝑃 data. 

What about the flop-time for doing “C0 += A0 * B0”?  

 

𝑛3

𝑃
𝜏,where 𝜏 = "flop", time takes to do one arithmic (+,∗) 

 

So total run-time = max of flop-time and communication time 

𝑇 = max{𝛼𝑃 + 𝛽𝑛2,
𝑛3

𝑃
𝜏} 

 

This algorithm is not good as it looks. First check scalability    

 

𝑆𝑃(𝑛) =
𝑏𝑒𝑠𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒 𝑇𝑠(𝑛)

𝑇𝑝(𝑛)
=

𝑃
𝑛3

𝑃 𝜏

1
2
𝑛3

𝑃 𝜏 +
1
2 (𝛼𝑃 + 𝛽𝑛

2)
=

2𝑃

1 + 𝑃
𝛼𝑃 + 𝛽𝑛2

𝑛3𝜏

 

We want  
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𝑆𝑃(𝑛) = 𝑂(𝑃) → 𝑛 = Ω(𝑃) 
 

That is because if 𝑛 ≪ 𝑃, then 𝑆𝑝 ≪ 𝑂(𝑃), i.e. increase the number of processors will do very 

little to the level of parallelism. But 𝑛 = Ω(𝑃) is very bad. That means double the number of 

processors will octuple the matrix size and quadruple the flop time of each node. 

 

What about the memory requirement?  

4
𝑛2

𝑃
 

 

4 is because there are 4 local matrices A0, B0, C0, and B1. 

 

2-D Algorithm 

 

Use mash network √𝑃 × √𝑃. Store 𝑛/√𝑃 × 𝑛/√𝑃 block of matrices 𝐴, 𝐵, 𝐶 to each node.  

 

To compute the portion that any node it is responsible for, it needs the entire rows and entire 

column. So each node simply broadcasts the necessary piece needed to its horizontal and vertical 

nodes. 

 
 
 for i = range(n/s) 
     //dividing the matrix into n/s number of either vertical  
     //or horizontal strips with width s. s < n/sqrt(P) 
        broadcast(A0, [owner])  
     //if the node has a portion of the strip, broadcast it,  
     //otherwise be ready to receive it 
        broadcast(B0, [owner]) 
        C += A*B   
 

 

Total flop time is still  

𝑇 =
𝑛

𝑠
(
𝑛

√𝑃
)
2

𝑠𝜏 +

{
 

 𝛼
𝑛

𝑠
log 𝑃 + 𝛽 (

𝑛

√𝑃
𝑠
𝑛

𝑠
) log 𝑃 𝑡𝑟𝑒𝑒 𝑏𝑎𝑠𝑒𝑑

𝛼
𝑛

𝑠
𝑃 + 𝛽

𝑛2

√𝑃
𝑏𝑢𝑐𝑘𝑒𝑡

 

 

Similarly we compute the scalability, and we get the isoefficiency function. 

 

𝑛𝑡𝑟𝑒𝑒 𝑏𝑎𝑠𝑒 = Ω(√𝑃 log 𝑃) 

𝑛𝑏𝑢𝑐𝑘𝑒𝑡 = Ω(𝑃
5
6) 

 

What about memory requirement for each node? Local A, B, C and temp for 2 pieces of strips 
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3
𝑛2

𝑃
+ 2

𝑛

√𝑃
𝑠 

 

A Lower Bound 

 

It turns out that the bucket bandwidth is the minimal bandwidth.  

Let’s first count the number of total multiplications operations per processor, which is 

unescapable to be  

𝑛3

𝑃
 

 

This cannot be done at once, because each node doesn’t have all the data. It will have to 

communicate and during one communication it can get maximum 𝑀 data, so roughly 

𝑠𝑖𝑧𝑒(𝐴)~𝑠𝑖𝑧𝑒(𝐵)~𝑠𝑖𝑧𝑒(𝐶) = 𝜃(𝑀). For such sizes it can perform at most  

 

𝜃 (𝑀
3
2) = 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 

 

Thus there will be (𝑛3/𝑃)/𝑀3/2 communications and every communication acquires 𝑀 data, so 

the total bandwidth is    

 

𝛽𝑀
𝑛3

𝑃𝑀
3
2

 

 

Assume we build the network whose memory is just enough to hold all the matrix data,  

 

𝑀 = 𝜃(
𝑛2

𝑃
) 

Then we get the minimal bandwidth is  

 

𝛽
𝑛3

𝑃√𝑀
= 𝛽

𝑛2

√𝑃
 

 

 

What about the minimal latency? We say there will be (𝑛3/𝑃)/𝑀3/2 communications, so the 

minimal latency is  

 

𝛼
𝑛3

𝑃𝑀
3
2

= 𝛼√𝑃 

 

Cannon Algorithm attains the lower bound. 

 

 

More recent developments in fast matrix multiplication, see 
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Grey Ballard, Austin Benson, A framework for practical parallel fast matrix multiplication 

 

 Distributed Sort  
 

Distributed Bitonic Merge Sort 

 

 
Picture from http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-896-

theory-of-parallel-hardware-sma-5511-spring-2004/lecture-notes/interconnection.pdf page 16 

 

Suppose we have a bitonic sequence of 8 elements, and we distribute it to two processors. The 

nodes in the above graphs are local variables, and the links represent dependencies. Clearly at the 

initial stage, there will be information exchanging between processor 1, 2, but after the initial 

stage, no more communications are necessary.  

 

In general, if we distribute 𝑛 elements in its sequential order to 𝑃 processors. Then 

communications will take place in the first log 𝑃 steps and followed by log 𝑛/𝑃 steps in sorting 

without communications, so the total communication time is  

 

(𝛼 + 𝛽
𝑛

𝑃
) log 𝑃 

 

 
Picture from http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-896-

theory-of-parallel-hardware-sma-5511-spring-2004/lecture-notes/interconnection.pdf page 20 

 

However, if we distribute 𝑛 elements in so-called cyclic order to 𝑃 processors. Then no 

communications will take place in the first log 𝑛/𝑃 steps and followed by log 𝑃 steps in 

communications, but the total communication time is the same. 

 

http://arxiv.org/abs/1409.2908
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-896-theory-of-parallel-hardware-sma-5511-spring-2004/lecture-notes/interconnection.pdf%20page%2016
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-896-theory-of-parallel-hardware-sma-5511-spring-2004/lecture-notes/interconnection.pdf%20page%2016
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-896-theory-of-parallel-hardware-sma-5511-spring-2004/lecture-notes/interconnection.pdf
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-896-theory-of-parallel-hardware-sma-5511-spring-2004/lecture-notes/interconnection.pdf
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Distributed Bitonic Merge Sort Total Cost 

 

Now we discuss the full bitonic Sort. As far as the previous discussion concern, it only talked 

about the last stage of the sorting, where a full bitonic sequence had formed.  

 

 
Picture from https://en.wikipedia.org/wiki/Bitonic_sorter  

 

Suppose there are 𝑃 processors, and each gets 𝑛/𝑃 data. There will be log 𝑛 number of stages. 

During each stage 𝑘, each processor has to do 
𝑛

𝑃
∗ 𝑘 number of comparisons, so the total 

computation time is  

𝜏 ∑
𝑛

𝑃
𝑘

log𝑛

𝑘=1

= 𝑂 (𝜏
𝑛 log2 𝑛

𝑃
) 

 

What about total communication time? Communication starts at stage log
𝑛

𝑃
+ 1, and we apply 

previous  

(𝛼 + 𝛽
𝑛′

𝑃′
) log 𝑃′ 

with 𝑛′ = 2𝑘, 𝑃′ = 2𝑘−log
𝑛

𝑃, therefore 

 

∑ (𝛼 + 𝛽
𝑛′

𝑃′
) log 𝑃′

log𝑛

𝑘=log
𝑛
𝑃
+1

= 𝑂 (𝛼 log𝑃 + 𝛽
𝑛

𝑃
log2 𝑃) 

 

In sum 

𝑇(𝑛) = 𝑂 (𝜏
𝑛 log2 𝑛

𝑃
+ 𝛼 log 𝑃 + 𝛽

𝑛

𝑃
log2 𝑃) 

 

Distributed Bucket Sort & Sample Sort 

 

Bucket sort has 𝑇 = 𝑂(𝑛), but it assumes the data is uniformly distributed within some range.  

Suppose there are 𝑛 data range from 𝑎 to 𝑏, and there are 𝑃 processors. Initially each processor 

stores 𝑛/𝑃 data. Let processor 𝑘 be the 𝑘th bucket which contains data range from 

https://en.wikipedia.org/wiki/Bitonic_sorter
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[𝑎 +
𝑏−𝑎

𝑃
𝑘, 𝑎 +

𝑏−𝑎

𝑃
(𝑘 + 1)). First each processor will do 𝑛/𝑃 number of comparisons and send 

on average 𝑛/𝑃2 data to one of the other processor. After all communications have completed, 

then each processor does a local sort. Therefore the total run-time is  

 

𝑇(𝑛) = 𝑂 (𝜏
𝑛

𝑃
+ (𝛼 + 𝛽

𝑛

𝑃2
)𝑃 + 𝜏

𝑛

𝑃
log

𝑛

𝑃
) 

which is ~𝑂(𝑛), if 𝑃 = 𝜃(𝑛). 
 

Bucket sorting has serious limitation, because it assumes the data set is uniformly distributed. To 

correct it, sample sort was invented. First each processor does a local sort then it finds the 𝑃 − 1 

cutoff points that will separate the local data into 𝑃 segment. Then each processor sends those 

𝑃 − 1 points to a central (reserved) processor. It will resort these 𝑃(𝑃 − 1) sample points and 

figure out the new 𝑃 − 1 cutoffs and sends them back to each processor, then each processor 

uses those as the bucket criteria. Thus  

 

𝑇𝑠𝑎𝑚𝑝𝑙𝑒(𝑛) = 𝑇𝑏𝑢𝑐𝑘𝑒𝑡(𝑛) + 𝑂 (𝜏
𝑛

𝑃
log

𝑛

𝑃
+ (𝛼 + 𝛽𝑃) + 𝜏𝑃2 log 𝑃2 + (𝛼 + 𝛽𝑃) log 𝑃)

= 𝑇𝑏𝑢𝑐𝑘𝑒𝑡(𝑛) + 𝑂(𝑃
2 log 𝑃) 

 

In 2015 Spark has set new benchmark in sorting. It sorted 100TB of data in 23 minutes.  

http://spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html  

 

 Distributed Graph Operations 
 

Distributed Level Synchronous BFS 

 

Take advantage of distributed matrix multiplication: create adjacency (Boolean) matrix  

 

∃ 𝑒𝑑𝑔𝑒 𝑖 → 𝑗 ⟺ 𝑎𝑖𝑗 = True 

 

Recall we wrote level_sync_BSF(G = (V,E), s) function for parallel BFS. In it, there is a 

processLevel(G, F[d], F[d+1], D) function. We are going to replace this processLevel 

function. 

 

Suppose there are 𝑃 processors and each stores a portion of the graph or actually a block of the 

adjacency matrix 𝐴. There is root (reserved) processor which will store the 𝐷 array that records 

the distance from each node of the graph to the starting node 𝑠. 
 

The root processor will initialize 𝐷 and a frontier F[0] as array 
 

D = [-1,-1,…,0,…,-1,-1] 
F[0] = [0,0,…,1,…,0,0] 

 

http://spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html
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where the only different elements −1, 1 in D and F[0] are at the sth position, representing the 

start node. Then root processor will broad cast F[0] to all processors. And all processors will do 

distributed matrix multiplication 

 

𝐹[0] ∗ 𝐴 = 𝐹[1] 
 

and send it back to the root processor. The root will use it to update 𝐷 array. If some element in 

𝐹[𝑙] has already been visited, i.e. showing non -1 from 𝐷, it should be taken out of 𝐹[𝑙]. Root 

processor will then the correct 𝐹[𝑙] to all processors and perform next matrix multiplication for 

𝐹[𝑙 + 1].  
 

Of course how matrix multiplication is performed depends on how the matrix was initial 

distributed.  

 

Graph Partitioning 

 

It is a very import problem for design of VLSI (very-large-scale integration) system. 

 

Partition vertices set 𝑉 = 𝑉0 ∪ …∪ 𝑉𝑝−1 so that for any 𝑖, 𝑗 

- 𝐺𝑖 ∩ 𝐺𝑗 = ∅, this avoids double-count after combining results from each processor 

- number of non-zero in 𝐺𝑖~ number of non-zero in 𝐺𝑗, balanced work. This is too hard. Graph 

partition problem only asks |𝑉𝑖|~|𝑉𝑗| 

- minimize edges between 𝐺𝑖, 𝐺𝑗  
 

Graph partition is NP-hard, meaning it’s an upper bound of NP. 

 

A problem is NP, stands for “non-deterministic polynomial time”. It means we don’t know if it 

can be solved in polynomial time, but if we are given a plausible answer to the problem, we can 

in fact verify the answer to see if it is correct or not in polynomial time. NP-complete means it is 

the lowest upper bound of NP and it is in NP, hence NP-complete = max(NP). 

 

For NP-hard problem, we use heuristic algorithm. 

 

We study three algorithms. All of them try to find a graph partition that cuts the graph into two 

equal vertices and minimize the cost(𝐺1, 𝐺2), which is the number of edges between 𝐺1,2. 
 

Kernighan-Lin Algorithm 

 

Cut the graph into two arbitrary halves 𝑉1, 𝑉2. We want to pick two subsets 𝑋1 ⊂ 𝑉1, 𝑋2 ⊂ 𝑉2 

with |𝑋1| = |𝑋2|, so that after swapping 𝑋1, 𝑋2, i.e. 

 

𝑉1
′ = 𝑉1 − 𝑋1 + 𝑋2, 𝑉2

′ = 𝑉2 − 𝑋2 + 𝑋1 
 

Finding such 𝑋1,2 is again NP-hard, so we should go heuristic. 
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Observation: consider two nodes 𝑎 ∈ 𝑉1, 𝑏 ∈ 𝑉2. Let 𝐸[𝑎] = number of edges 𝑎 connected to 𝑉2, 
𝐼[𝑎] = number of edges 𝑎 connected to 𝑉1. Similarly define 𝐸[𝑏], 𝐼[𝑏]. Let 𝑐𝑎𝑏 be 1/0 if there is 

an edge between 𝑎, 𝑏. Such edge if exists is already counted in 𝐸[𝑎], 𝐸[𝑏]. 
 

What is the change in cost if we swap 𝑎, 𝑏? 

 

𝐸[𝑎] + 𝐸[𝑏] − 𝐼[𝑎] − 𝐼[𝑏] − 2𝑐𝑎𝑏 
 

That is external links become internal links. 

 

KL-Algorithm: 

 

- Pick arbitrary 𝑉1, 𝑉2 
- for each node, compute 𝐸[. ], 𝐼[. ]. This part has run time  

 

𝑂(𝑑) 
 

where 𝑑 is the maximal degree of the graph. 

- find a pair 𝑎1, 𝑏1 that maximizes  

 

𝑔𝑎𝑖𝑛(𝑎, 𝑏) = 𝐸[𝑎] + 𝐸[𝑏] − 𝐼[𝑎] − 𝐼[𝑏] − 2𝑐𝑎𝑏 
 

- Record such pair, and remove them from graph (not actually remove them, but for the purpose 

of follow calculation) 

- Recompute 𝐸[. ], 𝐼[. ] for the rest of the nodes  

- Again find a pair 𝑎2, 𝑏2 that maximizes  

 

𝑔𝑎𝑖𝑛(𝑎, 𝑏) = 𝐸[𝑎] + 𝐸[𝑏] − 𝐼[𝑎] − 𝐼[𝑏] − 2𝑐𝑎𝑏 
 

- Continue as long as 𝑔𝑎𝑖𝑛(𝑎, 𝑏) > 0 

- Swap these (𝑎1, 𝑏1), … , (𝑎𝑘, 𝑏𝑘) from 𝑉1 to 𝑉2, we get 𝑉′1, 𝑉2′, 
- Now repeat the whole process again for the new 𝑉′1, 𝑉2′, till all 𝑔𝑎𝑖𝑛(𝑎, 𝑏) < 0 

 

Since there are two loops ranging 𝑂(|𝑉|) for computing 𝑔𝑎𝑖𝑛, total run time is  

 

𝑂(𝑑|𝑉|2) 
 

Graph Coarsening 

 

The idea is to coarse a very large graph down to manageable size. When NP-hard is no longer 

hard, solve the graph partition problem for the small graph, then map the solution to the original 

graph. 

 

How to coarse? 
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- start with a set of pairs of two nodes which have no edges among them. In the graph above. 

That will be {(1,2), (4,6)}. Such set is called maximal matchings 

- combine pairs into one. Because node 5 goes to both nodes 1 and 2, the combined node (1,2) 

should have an edge with node 5 with weight 2. 

- continue coarse using maximal matchings. Always try to combine edges with bigger weight 

first, like the node (1,2) and node 5, because once they combine, in the final graph they will not 

be separated. Such graph will likely close to be fully connected in the original graph, so they 

probably should not be separated.  

 

How many coarsening stages in order to shrink the graph to final number of vertices = 𝑘? 
Suppose at each stage, the maximal matchings return the biggest possible set, i.e. half of the 

vertices, then in the best possible scenario, 

 

#coarsening stages = Ω(log
|𝑉|

𝑘
)  

Spectral Partition 

 

Define Laplacian matrix of a graph 𝐿(𝐺) 
 

- Off diagonals are negative of the adjacency matrix (−𝐴).   

- Diagonal elements are the degrees of each node. 

 

Note that: if it is a directed graph, treat it as undirected (𝐴 ∨ 𝐴𝑇). That is because graph partition 

doesn’t care if it is directed or not. The cost function is the same, and for the spectral method, we 

will find eigenvalues and we will use the property of positive-semi-definite symmetric matrix. It 

is positive-semi-definite because assume 𝐺 is directed, (if not, convert it into a directed graph), 

then 

 

𝐿 = 𝐶𝑇𝐶 
 

C = incidence matrix of a directed 𝐺. Columns represent nodes and rows represent edges. −1 

indicates sink and +1 are the sources.  
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Picture from http://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/ax-b-and-

the-four-subspaces/graphs-networks-incidence-matrices/MIT18_06SCF11_Ses1.12sum.pdf  

 

Why is it called Laplacian? Consider the 2d mash network graph. What is its Laplacian matrix? 

It turns out its Laplacian is exactly the 2d Laplacian from pde. 

 

Claim: Given a partition 𝑉1,2, let 𝑋 be a column vector such that the 𝑖th element is +1(−1) if the 

𝑖th node is in 𝑉1(𝑉2), then the cost function  

 

𝑐𝑜𝑠𝑡(𝑉1, 𝑉2) =
1

4
𝑋𝑇𝐿(𝐺)𝑋 = # 𝑒𝑑𝑔𝑒𝑠 𝑐𝑢𝑡𝑜𝑓𝑓 𝑏𝑦 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 

 

Proof:  

∑𝑋𝑇𝐿𝑋

𝑖,𝑗

= ∑𝐿𝑖𝑗𝑋𝑖𝑋𝑗
𝑖=𝑗⏟      

𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑑𝑒𝑔𝑟𝑒𝑒𝑠
=2×𝑡𝑜𝑡𝑎𝑙 𝑒𝑑𝑔𝑒𝑠

+ ∑ 𝐿𝑖𝑗𝑋𝑖𝑋𝑗
𝑋𝑖𝑋𝑗=1

𝑖≠𝑗⏟        
−2×𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑑𝑔𝑒𝑠 ⏟                      

2×𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑑𝑔𝑒𝑠

+ ∑ 𝐿𝑖𝑗𝑋𝑖𝑋𝑗
𝑋𝑖𝑋𝑗=−1

𝑖≠𝑗⏟        
2×𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑑𝑔𝑒𝑠

 

QED. 

 

The optimal problem is NP-hard. 

arg𝑋 min
∑𝑋𝑖=0
𝑋𝑖=±1

𝑋𝑇𝐿(𝐺)𝑋  

So we relax it to,  

 

arg𝑋min𝑋
𝑇𝐿(𝐺)𝑋 

 

Clearly by spectral theory, since all eigenvectors {𝑣𝑘} of 𝐿 are orthogonal, and we denote the 

associated eigenvalues {𝑢𝑘}. Let  

 

𝑋 =∑〈𝑋, 𝑣𝑘〉𝑣𝑘 

The quadratic form 

min𝑋𝑇𝐿𝑋 = min∑𝑢𝑘
2 〈𝑋, 𝑣𝑘〉

2 

 

What are the eigenvectors of a typical Laplacian −(𝜕𝑥
2 + 𝜕𝑦

2)?  It is sin√𝑢𝑘𝑥 + cos√𝑢𝑘𝑦. We 

want the smallest 𝑢𝑘. So it is the 1st eigen mode 𝑣1, and it makes one intersection with the axis, 

i.e. half of a full wave period, which has exactly half positive and half negative values. 

 

For general Laplacian of a graph, we take a heuristic solution  

 

𝑋 = 𝑠𝑖𝑔𝑛(𝑣1) 
 

http://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/ax-b-and-the-four-subspaces/graphs-networks-incidence-matrices/MIT18_06SCF11_Ses1.12sum.pdf
http://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/ax-b-and-the-four-subspaces/graphs-networks-incidence-matrices/MIT18_06SCF11_Ses1.12sum.pdf
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7. Memory/CPU Optimization 

 

To achieve high performance, we should also optimize memories installed in the local machine.  

Real machine has hierarchy of memories: Disk, DRAM, L3, L2, L1/Cache, Registers. They are 

ranging from largest to smallest in memory size, and ranging from slowest to fastest.  

 

For simplest, we first study two-level memory. 

 

 Two-Level Memory Hierarchy  
 

Von Neumann Model  

 

- (local data rule) Processor only processes data on the fast memory, which is small in size, 𝑍. 

- (block transfer rule) Fast memory is connected to a slow memory. The transfer of data takes 

place in block size 𝐿 from the slow memory to fast memory.  

 

Let’s say the 𝑥th block is designated to addresses A[101] – A[120] and the (𝑥 + 1)th block is 

designated to addresses A[121] – A[140]. If there is a variable array, 𝑎 of some size, such that 

part of array 𝑎 stored on the 𝑥th block and the rest of array 𝑎 stored on the (𝑥 + 1)th block. To 

fetch 𝑎, both the 𝑥th block and the (𝑥 + 1)th block will be transfer to the fast memory. Despite 

that size of 𝑎 is less than 𝐿, 2𝐿 of data will be sent to the fast memory. 

 

Intensity, Balance, Time 

 

Let 𝑊 be number of works to be processed by the processor, and 𝑄 be the number of transfers 

that have to take place between fast and slow memory, then we define  

 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑊(𝑛)

𝐿 ∙ 𝑄(𝑛, 𝑍, 𝐿)
 

 

Why is it defined?  Let 𝛼 be amortized time to move one unit of memory, 𝜏 be flop time. Then 

the total run time 𝑇(𝑛) is  

 

𝜏𝑊 ∙ max (1,
𝛼/𝜏

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
) = max(𝜏𝑊, 𝛼𝐿𝑄) ≤ 𝑇(𝑛) ≤ 𝜏𝑊 + 𝛼𝐿𝑄 = 𝜏𝑊 (1 +

𝛼/𝜏

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
) 

 

The left bound assumes two processes can happen at the same time. 𝛼/𝜏 is a property purely 

controlled by the machine, call it  

 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒 =
𝛼

𝜏
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Before our algorithms focused on 𝑊, now we see we have to pay attention to 𝑄(𝑛, 𝑍, 𝐿). 
Because machine balance improves frequently, for the algorithm to scale well, we would like to 

design algorithms or change fast memory (𝑍) so that  

 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ≫ 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 
 

 

 Two-Level Matrix Multiplication 
 

Let’s compare two methods. Conventional way: dot product of rows and columns. It has 𝑊 =
𝑂(𝑛3), because every entry is sum of 𝑛 products (𝑊 = 𝑛 + 𝑛 − 1), and there are 𝑛2 of such 

entries. What about 𝑄? Since matrix is stored by 1d raw (or 1d column), really  

 

𝐴[𝑖, 𝑗] = 𝐴[(𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑜𝑓 𝐴[0]) + 𝑛𝑖 + 𝑗] 
 

Thus to compute  

 

𝐶𝑖𝑗 = 𝐴𝑖𝑙𝐵𝑙𝑖 
 

Assume 𝐿 < 𝑛, fast memory has to make, assume no cache! (see later section for cache) 

 

𝑄 = ⌈
𝑛

𝐿
⌉ + 𝑛 = 𝑂(𝑛) 

So total  

 

𝑄 = 𝑂(𝑛3) 
 

Clearly we moved move data than necessary. 

 

Method Two: block multiply. Divide matrix into block of 𝑏 × 𝑏 size. We know 𝑊 = 𝑂(𝑛3) 
because consider a resulting block of 𝐶, it is the sum of 𝑛/𝑏 blocks of 𝐴 times 𝑛/𝑏 blocks of 𝐵. 

It takes works 𝑊 = 𝑏3(𝑛/𝑏). There are total (𝑛/𝑏)2 of such blocks. Thus 𝑊 = 𝑂(𝑏3(𝑛/𝑏)3).  
 

What about 𝑄? To compute one block of 𝐶, we need sum of product of row blocks of 𝐴 and 

column blocks of 𝐵, it has to make 𝑄 =
𝑏2

𝐿

𝑛

𝑏
=
𝑏𝑛

𝐿
 transfers, so total  

𝑄 =
𝑏𝑛

𝐿
(
𝑛

𝑏
)
2

= 𝑂 (
𝑛3

𝐿𝑏
) 

 

Parallel Von Neumann Model  

 

Assume there are 𝑃 parallel processors, and they all access the fast memory at the same. Our 

previous discussions were still valid with a change of 𝑊 →𝑊/𝑃.  

 

Besides worry about the existence of fast/slow memory, what else can we pay attention to?  
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More physical aspects of algorithms to consider: Energy, Power, Time 

 

On a linux, one can program CPU frequency. 

http://wiki.archlinux.org/index.php/CPU_frequency_scaling. 

Clock freq ∝ 𝑉, and dynamic voltage scaling  

 

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑝𝑜𝑤𝑒𝑟 = 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑔𝑎𝑡𝑒 (𝐶𝑉2) ∗ 𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞 ∗ 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟

=
𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝑡𝑖𝑚𝑒
 

 

Dynamic power is the addition energy/time pump into the system (for specific instruction to 

run), which on top the baseline energy which is constant as long as the system is turned on. 

Activity factor is number of cycles per switch.  

 

Example: Let new frequency be 

 

𝑓′ =
𝑓

𝜎
→ 𝑛𝑒𝑤 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑝𝑜𝑤𝑒𝑟 =

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑝𝑜𝑤𝑒𝑟

𝜎3
 

 

If we don’t do anything else, clearly the program will run slower and the total energy consumed 

will go down 

 

𝑇′ = 𝑇𝜎,   𝐸′ =
𝐸

𝜎2
 

 

Now let us say we want to actually make the program run faster. Since the power is down by 𝜎3, 

we can use more processors without worrying overheat. So we increase parallelism.  

 

𝑃′ = 𝜎3𝑃 
By Brent’s theorem 

 

𝑇′′ ≤ (𝐷 +
𝑊 − 𝐷

𝜎3𝑃
)𝜎 

 

The minimum is attained at  

𝜎 = (2
𝑊 − 𝐷

𝑃𝐷
)
1/3

 

 

 Two-Level Memory Sorting  
 

We are now back to two-level memory model. We saw that typical data exchange is slower than 

computation. To increase Intensity, we would like to limit fast/slow data exchanges. 

 

2-way Merge Sort  

http://wiki.archlinux.org/index.php/CPU_frequency_scaling
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Sort 𝑛 elements. Assume the processor is sequential.  

 

PHASE 1 

- fetch 𝑘 blocks of size 𝐿, that 𝑘𝐿 = 𝑍, from slow to fast memory, then sort. Overwrite them 

back to slow memory. Continue next 𝑘 blocks, till finish all 𝑛. End up having 𝑛/𝑍 sorted 

subsequences. 

 

Total transfers 

𝑄 = 𝑂 (
𝑛

𝐿
) 

Total comparison computation 

𝑊 = 𝑂 (
𝑛

𝑍
𝑍 log 𝑍) 

 

PHASE 2 

 

To merge the 𝑛/𝑍 sorted subsequences, we use 2-way merge.  

 

-  Start with a pair of sorted subsequences, denoted 𝐴𝑠 , 𝐵𝑠. Create an empty sequence 𝑆𝑠 in the 

slow memory as a place holder for the solution. Create 𝐴𝑓 , 𝐵𝑓 , 𝑆𝑓 of empty sequences with size 

𝑍/3 as place holders in the fast memory.  

-  Fetch 𝐴𝑠 , 𝐵𝑠 to fill in 𝐴𝑓 , 𝐵𝑓. Then do usual merge sort (compare elements by elements in the 

orders, and delete elements from 𝐴𝑓 , 𝐵𝑓.), write solution to 𝑆𝑓. If 𝐴𝑓 , 𝐵𝑓 become empty, fetch 

more from 𝐴𝑠, 𝐵𝑠. If 𝑆𝑓 becomes full, dump it to 𝑆𝑠. 

-  Repeat this for all pairs of subsequences and for any pairs of the resulting subsequences till 

𝑛 is sorted 

 

Transfers of one merge 

𝑄 = 4
𝐴𝑠
𝐿

 

Comparison of one merge 

 

𝑊 = 𝐴𝑠 
 

Then the total 

 

𝑄 = ∑ 4
𝑍2𝑖

𝐿

log
𝑛
𝑍

𝑖=0

𝑛

𝑍2𝑖+1
 = 2

𝑛

𝐿
(log

𝑛

𝑍
+ 1) ,    𝑊 =

𝑄

4
𝐿 = 𝜃 (𝑛 log

𝑛

𝑍
) 

 

 

Combining two phases, we get 
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𝑄 = 𝑂 (
𝑛

𝐿
log

𝑛

𝑍
) , 𝑊 = 𝑂 (𝑛 log 𝑍 + 𝑛 log

𝑛

𝑍
) = 𝑂(𝑛 log 𝑛) 

 

This turns out not to be the best we can do. Recall in the second phase, we fill the fast memory 

with three sequences 𝐴𝑓 , 𝐵𝑓 , 𝑆𝑓, but we only do very simple operations, which is a bad use of fast 

memory.  

 

 

PHASE 2 (𝑘-way) 

 

To merge the 𝑛/𝑍 sorted subsequences, we use 𝑘-way merge.  

 

-  Start with 𝑘 = 𝑍/𝐿 − 1 sorted subsequences, denoted 𝐴𝑠, 𝐵𝑠,… Create an empty sequence 𝑆𝑠 
in the slow memory as a place holder for the solution. Create 𝐴𝑓 , 𝐵𝑓 , … 𝑆𝑓 of empty sequences 

with size 𝐿 as place holders in the fast memory.  

-  Fetch 𝐴𝑠 , 𝐵𝑠, … to fill in 𝐴𝑓 , 𝐵𝑓 , …. Then do usual 𝑘-merge sort. Compare the first elements of  

𝐴𝑓 , 𝐵𝑓,.. Find the extrema, write it to 𝑆𝑓, delete it, continue sorting. Notice if 𝑘 is large, don’t 

want to compare 𝑘 elements, after deleting the extrema, adding one back in, then re-compare the 

whole list again, 𝑂(𝑘). Instead when 𝑘 is large, we reserve additional size 𝑘 space in fast 

memory. We build a min-heap for these 𝑘 element. Then deleting and adding become heapify 

operations, 𝑂(log 𝑘). 
-  The rest is the same. If 𝐴𝑓 , 𝐵𝑓 , … become empty, fetch more from 𝐴𝑠, 𝐵𝑠,…. If 𝑆𝑓 becomes full, 

flush it to 𝑆𝑠. 
 

 

Transfers of one 𝑘-way merge 

𝑄 = 2𝑘
𝐴𝑠
𝐿

 

 

Comparison (assume heap-based sort) of one 𝑘-way merge 

 

𝑊 = 𝑘 + 𝑘𝐴𝑠 log 𝑘 
 

Then the total 

 

𝑄 = ∑ 2𝑘
𝐴𝑠
𝐿

log𝑘
𝑛
𝐿

𝑖=0

𝑛

𝑘𝐴𝑠
 =
2𝑛

𝐿
(log𝑘

𝑛

𝐿
+ 1) ,    𝑊 =

𝑄

2
𝐿 log 𝑘 = 𝑂 (𝑛 log

𝑛

𝐿
) 

 

 

Combining two phases, we get 

 

𝑄 = 𝑂 (
𝑛

𝐿
log𝑍

𝐿

𝑛

𝐿
) , 𝑊 = 𝑂 (𝑛 log 𝑍 + 𝑛 log

𝑛

𝐿
) = 𝑂(𝑛 log 𝑛) 
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This turns out to be the best we can do. 

 

The Lower bound of Sort Transfers 

 

Claim: The lower bound of comparison based sort on external memory is  

 

𝑄(𝑛, 𝑍, 𝐿) = Ω (
𝑛

𝐿
log𝑍/𝐿 

𝑛

𝐿
) 

 

Proof:  

 

For 𝑛 distinct items, there are 𝑛! orderings. Only 1 of them gives what we want. After we have 

seen 𝐿 items out of the 𝑛 items, and sort these 𝐿 items. How many orderings out of initial 𝑛! 
orderings are still possible? 

 

The answer = 𝑛!/𝐿!. Why? Consider the rest 𝑛 − 𝐿 unseen items. They are still in random. For 

each of these correct sequences, if we were allowed to let these seen items to be in random order 

again, we would get  

 

answer × 𝐿! = 𝑛! → answer =
𝑛!

𝐿!
  

 

Let  

𝐾(𝑡) = # of correct orderings after the tth transfer 
 

Consider 𝐾(𝑡),  assume the fast memory was full. Now flush out 𝐿 data and add additional new 

𝐿 data to 𝑍, and we can sort them, therefore the randomness from 𝐾(𝑡 − 1) is reduced to  

  

𝐾(𝑡) =
𝐾(𝑡 − 1)

(
𝑍
𝐿
) 𝐿!

 

The (
𝑍
𝐿
) factor gives the number of ways to find seats in 𝑍 and insert 𝐿 data into these seats, and 

𝐿! Gives the number of ways to order 𝐿. Now these freedoms are gone. 

 

So the asymptotic formula becomes  

𝐾(𝑡) =
𝑛!

[(
𝑍
𝐿
) 𝐿!]

𝑡 

 

We want to equal 𝐾(𝑡) = 1 and solve for 𝑡. Applying Stirling's 

 

1 =
𝑛!

[(
𝑍
𝐿
) 𝐿!]

𝑡 → 0 = 𝑛 ln𝑛 − 𝑡[𝑍 log 𝑍 − (𝑍 − 𝐿) log(𝑍 − 𝐿)] 

We get 
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𝑡 ≈
𝑛 ln 𝑛

𝑍 ln 𝑍 − (𝑍 − 𝐿) log(𝑍 − 𝐿)
≥
𝑛(ln 𝑛 − ln 𝐿)

𝐿(ln 𝑍 − ln 𝐿)
=
𝑛

𝐿
log𝑍/𝐿 

𝑛

𝐿
 

 

QED 

 

 Two-Level Memory Searching 
 

The Lower bound of Search of a Sorted Sequence Transfers 

 

A simple binary search will fetch 𝐿 data from a list in the middle, then decide to move left or 

right, in worst case total transfers 

 

𝑄 = 𝑂 (log
𝑛

𝐿
) 

 

Can we do better? Yes, but we have to build store the list into a specific layout: B-tree. 

 

Recall a B-tree whose nodes have at most 𝐵 keys can have (𝐵 + 1) children. E.g. Well-known 

(2,3) tree is a B-tree with 𝐵 = 2. The ordering of a B-tree is very similar to a binary tree, 

however inserting is very different. Generally speaking, inserting into a binary tree will create a 

leaf down; while inserting into a B-tree will try to bubble it up till it finds an upper parent that is 

not full. All efforts are trying to regulate the tree height to log𝐵+1 𝑛. In term of our searching 

using fast-slow memories, let 𝐵 = 𝜃(𝐿). In worst case total transfers 

 

𝑄 = 𝑂 (
log 𝑛

log 𝐿
) 

 

That is a lot better than log
𝑛

𝐿
= log 𝑛 − log 𝐿. 

 

Claim: The lower bound of search on sorted sequence is  

 

𝑄(𝑛, 𝑍, 𝐿) = Ω(log𝐿 𝑛) 
 

Proof:  

 

Consider the sorted list as values of a random variable 𝑋. Borrow ideas from information theory, 

if 𝑋 can take 𝑛 different values, then we need  

 

log 𝑛 
 

number of bits to represent it. If we are clever, we can pick the optimal 𝐿 values to test 𝑋, so that 

log 𝐿 out of the log 𝑛 bits can be eliminated. If every read can eliminate log 𝐿, then total number 

of transfers is 
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𝑄 = 𝑂(𝐿𝑜𝑔𝐿𝑛) 
QED 

 

 Cache and Paging  
 

We assume machine automatic organizes fast memory (Cache) by these rules 

 

- Fast memory is divided into blocks of size 𝐿, 𝑍 = Ω(𝐿2) is because of matrix multiplication.  

- When the program calls LOAD, to write some variable value to the register, the processor will 

first check the cache if it is there. If it is not (called cache miss), a copy will be stored in cache. 

- Similarly when the program calls STORE, to write register value to the slow memory, the 

processor will first check the cache. If is not (cache miss), a copy will be stored in cache. 

- The cache is fully associative, meaning a continuous blocks of data in the slow memory doesn’t 

have to be store continuous blocks in the cache.  

- When cache is full, it will evict the block that is least recently used (LRU).  

 

So the total number of transfer is determined by  

 

𝑄 = cache miss 
 

Is the least recently used (LRU) eviction policy good? It is very good. It is as asymmetrically 

good as the best it can be, which is the optimal eviction, which is to evict items that will be used 

least in the future.  

 

Lemma (competitiveness):  

 

𝑄𝐿𝑅𝑈(𝑛, 𝑍, 𝐿) ≤ 2 ∙ 𝑄𝑂𝑃𝑇 (𝑛,
𝑍

2
, 𝐿) 

 

Proof: 

Consider a very long instruction segment of a program. The piece of instruction contains 𝑍 

unique addresses. The maximum number of transfer to clear out the cache and to run the piece of 

instruction by LRU will be  

 

𝑄𝐿𝑅𝑈(𝑍) ≤ 𝑍 

 

While for OPT cache, because let us assume that it is so efficient that before it hits the piece of 

instruction, its cache contains exact the first 𝑍/2 of the addresses in the instruction, hence it can 

go the first half of the instruction without evicting anything, but after that, to finish the 

instruction, it has to evict 𝑍/2 of addresses, so  

 

𝑄𝑂𝑃𝑇 (
𝑍

2
) ≥

𝑍

2
 

 

QED 
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Corollary:  if (regularity condition) 

 

𝑄𝑂𝑃𝑇 (𝑛,
𝑍

2
, 𝐿) = 𝑂(𝑄𝑂𝑃𝑇(𝑛, 𝑍, 𝐿)) 

 

then  

𝑄𝐿𝑅𝑈(𝑛, 𝑍, 𝐿) = 𝜃(𝑄𝑂𝑃𝑇(𝑛, 𝑍, 𝐿)) 
 

 

Proof: 

𝑄𝑂𝑃𝑇(𝑍) ≤ 𝑄𝐿𝑅𝑈(𝑍) ≤ 2𝑄𝑂𝑃𝑇 (
𝑍

2
) = 𝑂(𝑄𝑂𝑃𝑇(𝑍)) 

QED 

 

 Cache Oblivious Algorithms 
 

Write algorithms that let automatic cache do the work still achieve the optimal result as if we 

specified how to read/write between fast/slow memories. 

 

Cache Matrix Multiplication 

 

Recall cache aware block multiplication of block size 𝑏 × 𝑏. Assume 𝑏2 = 𝑍 

 

𝑄 = 𝑂(
𝑛3

𝐿√𝑍
) 

 

Now we write cache oblivious code that will match the same transfers. 

 
 
 mm(n, A, B, C)  //n size of matrix 
       //divide and conquer  
       if n <- 1 then  C <- C + A*B 
       else 
               for i <- 1 to 2   
                        for j <- 1 to 2   
                                   for k <- 1 to 2   
                                              mm(n/2, A_ik, B_kj,  C_ij)     
                            //e.g. A_11 means upper left block, etc 
 

 

Consider a small 𝑛𝑏 such that 3𝑛𝑏
2 ≤ 𝑍, so the program will cache everything at the beginning. 

For 𝑛 > 𝑛𝑏, when it divides and conquers into 8 smaller function calls and  
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𝑄(𝑛, 𝑍, 𝐿) =

{
 

 𝜃 (
𝑛2

𝐿
) 𝑛 < 𝑛𝑏

8 ∙ 𝑄 (
𝑛

2
, 𝑍, 𝐿) + 𝑂(1) 𝑛 > 𝑛𝑏

 

By the master theorem 

 

𝑄(𝑛, 𝑍, 𝐿) = 𝑂 (
𝑛3

𝐿√𝑍
) 

 

Cache Binary Search 

 

Recall we showed B-tree attained the minimum.  

 

𝑄 = 𝑂(log𝐿 𝑛) 
 

Now we show another layout: Van Emde Boas tree. The idea is similar to the matrix block 

multiply above. Divide a binary tree into equal three trees; one on top, and two on the bottom. 

Store those three subtrees as min-heap. Continue divide subtree into three subsubtrees, do this 

recursively. At some point, the subtree size will become 𝐿, the height of the tree of the subtree is 

log 𝑛 / log 𝐿. Why? That is because the original tree height is log 𝑛, and each subtree’s height is 

log 𝐿, so the height of the tree of the subtree is the ratio. 

 

 

The Future: Quantum Computing 
 

8. Quantum Information & Entanglement 

  

 Mix States 
 

qubit = quantum + bit, which is superposition of 

 

|𝜓⟩ = 𝑎|1⟩ + 𝑏|0⟩, 𝑎, 𝑏 ∈ ℂ, |𝑎|2 + |𝑏|2 = 1 
 

where |𝑎|2 = probability of  |𝜓⟩ in state |1⟩. 
 

Combine two systems, create joint (pure) state (soon we will talk about mix states) 

  

|𝜓1, 𝜓2⟩ = |𝜓1⟩ ⊗ |𝜓2⟩ =  𝑎1𝑎2|1, 1⟩ + 𝑎1𝑏2|1, 0⟩ + 𝑏1𝑎2|0, 1⟩ + 𝑏1𝑏2|0,0⟩ 
 

One can create projection operators or called the density matrix 

 

𝑃 = |𝜓1⟩⟨𝜓1| 𝑎𝑝𝑝𝑙𝑦 𝑡𝑜 (|𝜓2⟩)  → (𝑎1𝑎2 + 𝑏1𝑏2)|𝜓1⟩ 
 

and  
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|𝑎1𝑎2 + 𝑏1𝑏2|
2 = the expectation value of |𝜓2⟩ 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑃 𝑜𝑟 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑡𝑜 |𝜓1⟩  

 

 

What does 𝑃 = |𝜓1⟩⟨𝜓1| look like in matrix form? 

 

(
𝑎
𝑏
) (𝑎∗ 𝑏∗) = (

|𝑎|2 𝑎𝑏∗

𝑏𝑎∗ |𝑏|2
) 

What is 𝑃2? 
 

𝑃2 = 𝑃 
 

Notice the trace of 𝑃2 is 1.  Similarly, if we do this for |𝜓1, 𝜓2⟩ above, we get trace 1 too. 

 

The trace of an operator is thus defined to be 

 

𝑇𝑟(𝑂) = ∑ ⟨𝑛|𝑂|𝑛⟩

𝑛∈𝑎 (𝑛𝑜𝑡 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙)  
𝑏𝑎𝑠𝑖𝑠 𝑜𝑓 𝐻𝑖𝑙𝑏𝑒𝑟𝑡

 

 

Trace is nice because it is invariant of bases. Also it is cyclic 𝑇𝑟(𝐴𝐵𝐶) = 𝑇𝑟(𝐵𝐶𝐴). 
 

The density matrix is nice too. If we want to find expectation of any operation 𝑂 acts on |𝜓⟩, we 

can use its density matrix 

 

⟨𝜓|𝑂|𝜓⟩ = 𝑇𝑟(⟨𝜓|𝑂|𝜓⟩) = 𝑇𝑟(𝑂|𝜓⟩⟨𝜓|) = 𝑇𝑟(𝑂𝑃𝜓). 

 

This suggests we can use solely the density matrix to represent the state.  

 

What if we create a Frankenstein state? 

 

𝑃𝐹𝑟𝑎𝑛𝑘 = ∑ 𝜆𝑘
𝑛∈𝑠𝑜𝑚𝑒 (𝑛𝑜𝑡 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑖𝑙𝑦) 

𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠

|𝜓𝑘⟩⟨𝜓𝑘| 

with all 𝜆𝑘 ∈ [0,1],  and ∑𝜆𝑘 = 1.  

 

Clearly  

𝑇𝑟(𝑃𝐹𝑟𝑎𝑛𝑘) = ∑𝜆𝑘 = 1 
 

That is why we need ∑𝜆𝑘 = 1. Since 𝑃𝐹𝑟𝑎𝑛𝑘 is made of not necessarily orthogonal states, in 

general 

 

⟨𝜓𝑘|𝑃𝐹𝑟𝑎𝑛𝑘|𝜓𝑘⟩ ≠ 𝜆𝑘 

 

But what about 𝑃2 = 𝑃? 
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𝑃𝐹𝑟𝑎𝑛𝑘
2 = ∑𝜆𝑘

2|𝜓𝑘⟩⟨𝜓𝑘| 
and 

 

𝑇𝑟(𝑃𝐹𝑟𝑎𝑛𝑘
2 ) = ∑𝜆𝑘

2 ≤ 1 

 

Ha-La, the only way 𝑃2 = 𝑃 is when all except one 𝜆𝑘 = 1. So when 𝑃2 ≠ 𝑃 equivalently when 

𝑇𝑟(𝑃2) ≠ 1, we say  

 

𝑃𝐹𝑟𝑎𝑛𝑘 = 𝑎 𝑚𝑖𝑥 𝑠𝑡𝑎𝑡𝑒 

 

Because trace is invariant, there is no way a pure state |𝜓⟩ can give arise to 𝑃𝐹𝑟𝑎𝑛𝑘  by doing 
|𝜓⟩⟨𝜓|.  
 

 Entropy and Information 
 

We define entropy of information of the state 

 

𝑆(𝑃) = −𝑇𝑟(𝑃 log2 𝑃) 
 

To log matrix, we want to first diagonalize 𝑃. This can always be achieved because 𝑃 is 

Hermitian.  

 

𝑆(𝑃) = −∑(𝜆𝑒 log2 𝜆𝑒)

|𝐻|

𝑒=1

  

 

where 𝜆𝑒 are eigenvalues. Notice if 𝜆𝑒 = 1 𝑜𝑟 0, 𝜆𝑒 log2 𝜆𝑒 = 0. Thus 

 

𝑆(𝑃𝑢𝑟𝑒) = 0, 𝑆(𝑀𝑖𝑥) > 0 
 

 Entanglement 
 

An example of mix state 

 

𝑃 =
1

2
(|0⟩⟨0| + |1⟩⟨1|)  

 

To create it, we start from a pure joint state,  

 

|𝜓𝐴𝐵⟩ =
|00⟩𝐴𝐵 + |11⟩𝐴𝐵

√2
 

 

Then take partial trace of the second particle 
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∑ [⟨𝑛| (
|00⟩ + |11⟩

√2
)(
|00⟩ + |11⟩

√2
)

∗

|𝑛⟩]
𝑠𝑡𝑎𝑡𝑒𝑠 𝑜𝑓 

𝑠𝑒𝑐𝑜𝑛𝑑 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
𝑛=0,1

=
1

2
(|0⟩⟨0| + |1⟩⟨1|) 

 

Now we see 1st particle is shewed. There is no way it can be pure again. We say  

 
|00⟩ + |11⟩

√2
= 𝑎𝑛 𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑 𝑠𝑡𝑎𝑡𝑒 

 

Clearly if |𝜓𝐴𝐵⟩ were some simple product 

 

|𝜓𝐴𝐵⟩ = |Φ𝐴⟩|𝜙𝐵⟩ 
 

Then partial trace will return pure state. 

 

 

Another example, check 

 

|𝜓𝐴𝐵⟩ =  
|00⟩ + |10⟩ + |01⟩ + |11⟩

2
= 𝑛𝑜𝑡 𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑 𝑜𝑟 𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 

 

We define a measure of the degree of entanglement as the entropy of after taking partial trace 

with respects to either 𝐴 or 𝐵, 

 

𝑆 (𝑇𝑟𝐴 𝑜𝑟 𝐵(𝑃|𝜓𝐴𝐵⟩)) 

 

Claim: either way the value is the same. 

 

Proof: start with a pure joint state, (we need a pure state, because we need each |Φ𝐴⟩, |𝜙𝐵⟩ 
orthogonal in their own 𝐻 spaces. Otherwise the claim is not true, so quantifying mixed 

entanglement states remain a hard problem) 

 

|𝜓𝐴𝐵⟩ =∑𝜌𝑘  

𝑘

|Φ𝐴⟩|𝜙𝐵⟩ 

Then  

 

𝑇𝑟𝐴(𝑃|𝜓𝐴𝐵⟩) =∑𝜌𝑘
2 

𝑘

|Φ𝐴⟩⟨Φ𝐴| → 𝑆 (𝑇𝑟𝐴(𝑃|𝜓𝐴𝐵⟩)) =∑𝜌𝑘
2 log 𝜌𝑘

2

𝑘

= 𝑇𝑟𝐵(𝑃|𝜓𝐴𝐵⟩) 

QED 

 

Suppose we measure 2nd particle and find it at |1⟩, that is the state collapsed   
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 𝐵⟨1| (
|00⟩𝐴𝐵 + |11⟩𝐴𝐵

√2
)~|1⟩𝐴 

 

For entangled state, by measuring one particle, we change the state of the other. For un-

entangled  

 

𝐵⟨1| ( 
|00⟩ + |10⟩ + |01⟩ + |11⟩

2
) → |1⟩𝐴 + |0⟩𝐴 

 

State of the other particle doesn’t change. 

 

 

9. From Laser to Quantum Computer  
 

One promising way to build quantum computer is to use laser and single set of atoms. 

 

 Coherent Mixture States & Lasers 
 

Coherent state |𝐴⟩ exhibits classical behavior (see my quantum mechanics note I section 2.2). It 

is the eigenstate of the lowing operator 𝑎, 

 

𝑎|𝐴⟩ = 𝐴|𝐴⟩ 
 

Since 𝑎 is not Hermitian, 𝐴 is complex, one can express |𝐴⟩ in terms of energy states 

 

|𝐴⟩ = 𝑒−
|𝐴|2

2 ∑
𝐴𝑛

√𝑛!
|𝑛⟩

𝑛

= 𝑒𝐴𝑎
+
|0⟩𝑒−

|𝐴|2

2  

 

How does |𝐴⟩ evolve? 

 

𝑒−𝑖
𝐻𝑡
ℏ |𝐴⟩ = 𝑒−𝑖

𝐻𝑡
ℏ 𝑒𝐴𝑎

+
𝑒𝑖
𝐻𝑡
ℏ 𝑒−𝑖

𝐻𝑡
ℏ |0⟩𝑒−

|𝐴|2

2 = 𝑒𝐴𝑎
+
𝑒−𝑖𝑤𝑡|0⟩𝑒−

𝑖
2
𝑤𝑡𝑒−

|𝐴|2

2 = 𝑒−𝑖𝑤𝑡|𝐴⟩𝑒−
𝑖
2
𝑤𝑡

 
 

Similarly  
 

𝑎𝑒−𝑖
𝐻𝑡
ℏ |𝐴⟩ = 𝐴𝑒−𝑖𝑤𝑡𝑒−𝑖

𝐻𝑡
ℏ |𝐴⟩ 

 
Combining the two gives 

|𝐴(𝑡)⟩ → 𝑒−
𝑖
2
𝑤𝑡|𝐴(0)𝑒−𝑖𝑤𝑡⟩ 

 

To measure this evolution of phase 𝑒−
𝑖

2
𝑤𝑡

, one can use beam splitter and ask split beams to travel 

different optical paths and then recombine them to see interference.   
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Why have coherent states to do with beams? Recall quantization of EM, (for deviation see my 

quantum mechanics II notes chapter 4) 

 

𝐸⃗ = 𝑖∑√
2𝜋ℏ𝑤

𝑉
 

𝜆,𝑘⃗ 

[𝜖 𝜆𝑎𝑒
𝑖𝑘⃗  ̇𝑟 − 𝑎+𝜖 𝜆

∗𝑒−𝑖𝑘⃗  ̇𝑟 ]  

 

where 𝑉 = cubic space in which EM is in, 𝑤 = 𝑐|𝑘⃗ |, 𝜆 = 1,0, 𝜖 𝜆 = two polarizations.  𝑘⃗  is the 

wave vector. 𝑟 = position vector. 𝑎 = annihilation operator, we use convention 𝜖0 = 1/4𝜋. The 

moral of the story is that lights are photons. Furthermore if we make a (maximum because we 

have no knowledge of the phases) mixture of all coherent states of same amplitude, i.e. |𝐴⟩ =
|𝐴|𝑒𝑖𝜙, same |𝐴|, allow 𝜙 to vary 

 

𝑃 =
1

2𝜋
∫ 𝑑𝜙
2𝜋

0

|𝐴⟩⟨𝐴| = 𝑒−|𝐴|
2
∑

𝐴2𝑛

𝑛!
|𝑛⟩⟨𝑛|

𝑛

 

 

 We arrive the most logical answer, a Poisson distribution.  

 

 

 Quantum Transistor and Gates  
 

Theorem: All quantum evolutions are given by unitary operators.  

 

Proof: Schrodinger says  

 

𝑖ℏ
𝑑|𝜓⟩

𝑑𝑡
= 𝐻|𝜓⟩ → |𝜓⟩𝑡2 = 𝑈(𝑡1, 𝑡2)|𝜓⟩𝑡1 

where  

𝑈 = 𝑒−
𝑖

ℏ
𝐻(𝑡2−𝑡1) is unitary  

QED 

 

This restricts the possible actions one can do. In particular,  

 

No-cloning / No deleting Theorem: Given two bits |𝑥⟩|𝑦⟩, one cannot make a copy of 𝑥 to 𝑦. 

 

Proof: Suppose there exists such 𝑈 

𝑈(|𝑥⟩|𝑦⟩) = |𝑥⟩|𝑥⟩ 
 

Try 

𝑈(|0⟩|1⟩) = |0⟩|0⟩   𝑎𝑛𝑑 𝑈(|0⟩|0⟩) = |0⟩|0⟩    
 

then take dot of the two equations, get 

 

0 = 1 
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Contradiction. QED 

 

 

Quantum Pauli-X (Not) Gate 

 

𝑋 = (
0 1
1 0

) 

Then 

𝑋|0⟩ = |1⟩  𝑎𝑛𝑑 𝑋|1⟩ = |0⟩   
 

 

Quantum Hadamard Gate 

 

𝐻 =
1

√2
(
1 1
1 −1

) 

Then  

𝐻|0⟩ =
|1⟩ + |0⟩

√2
 𝑎𝑛𝑑 𝐻|1⟩ =

|0⟩ − |1⟩

√2
 

 

Quantum CNot (control not) Gate  

 

𝐶𝑁𝑂𝑇 = (

1
1

1
1

) 

 

Then  

𝑈(

|00⟩
|01⟩
|10⟩
|11⟩

) = (

|00⟩
|01⟩
|11⟩
|10⟩

)   

 

Hence the first bit is an enabler, when it is on, the second bit gets negated.  

 

 

Example. 

 

To create the entangled state  

 
|11⟩ + |00⟩

√2
 

 

Create two |0⟩, |0⟩ particles, send the first one to 𝐻, then combine the second one. The send the 

to CNOT 

 



68  

  

|0⟩|0⟩ →
|1⟩|0⟩ + |0⟩|0⟩

√2
→
|11⟩ + |00⟩

√2
 

If we send to CNOT again, we detangle them 

 
|11⟩ + |00⟩

√2
→
|10⟩ + |00⟩

√2
 

 

 

 

10. Quantum Algorithms 

 

 Deutsch’s Problem 
 

 

𝑓: {0,1}𝑛 → {0,1} 
 

Question: is 𝑓 a constant or a balance function? We are told it is one of the two choices. A 

balance function output half 1 and half 0.  

 

𝑓 is called an oracle, a black box. We cannot break in the internal mechanism of 𝑓. We can only 

inquire 𝑓. 

 

 

Classically need to do 2𝑛−1 + 1 evaluations. Quantum computer does 1 evaluation of 𝑓. 

 

 
Picture from https://en.wikipedia.org/wiki/Deutsch%E2%80%93Jozsa_algorithm  

 

 

- prepare 𝑛 + 1 qbits. The first 𝑛 are |0⟩, the last one is |1⟩. Send them to Hadamard 

 

|1⟩ + |0⟩

√2

|1⟩ + |0⟩

√2
…
|0⟩ − |1⟩

√2
=

1

√2𝑛
∑ |𝑥⟩

𝑥∈{0,1}𝑛

|0⟩ − |1⟩

√2
  

 

- apply 𝑓 to the 𝑥 particles, and add it to the last.  

 

𝑈𝑓|𝑥⟩|𝑦⟩ = |𝑥⟩|𝑓(𝑥) + 𝑦⟩ 
 

That is CNot, because + 0 does nothing, but +1 is flip. 

 

https://en.wikipedia.org/wiki/Deutsch%E2%80%93Jozsa_algorithm
https://en.wikipedia.org/wiki/File:Deutsch-Jozsa_Algorithm.svg
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1

√2𝑛
∑ |𝑥⟩

𝑥∈{0,1}𝑛

|𝑓(𝑥)⟩ − |𝑓(𝑥) + 1⟩

√2
 =

1

√2𝑛
∑ |𝑥⟩

𝑥∈{0,1}𝑛

(−1)𝑓(𝑥)
|0⟩ − |1⟩

√2
 

 

- trace out the last bit, apply Hadamard 

 

1

2𝑛
∑ ∑ |𝑦⟩

𝑥∈{0,1}𝑛

(−1)𝑥∙𝑦+𝑓(𝑥)

𝑦∈{0,1}𝑛

 

 

Then measure 𝑦 = {0}𝑛 

 

|
1

2𝑛
∑ |0…0⟩

𝑥∈{0,1}𝑛

(−1)𝑓(𝑥)| = 1 𝑖𝑓 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑡𝑎𝑛𝑡, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

 Grover Algorithm  
 

Problem:  Give a function  

𝑓: {1, … , 𝑁} → {0,1} 
 

and we know there is only one 𝑥∗ ∈ {1,… ,𝑁} such that 𝑓(𝑥∗) = 1, otherwise 0. Our task is to 

find 𝑥∗. 
 

Classical method will do 𝑂(𝑁) searches. Quantum computer will do  

 

𝑂(√𝑁) 
 

 
Picture from https://en.wikipedia.org/wiki/Grover%27s_algorithm  

 

- apply Hadamard 

 

1

√2𝑛
∑ |𝑥⟩

𝑥∈{0,1}𝑛

|0⟩ − |1⟩

√2
  

 

- then apply  𝑈𝑤|𝑥⟩ = (−1)
𝑓(𝑥)|𝑥⟩  

 

https://en.wikipedia.org/wiki/Grover%27s_algorithm
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1

√2𝑛
∑ (−1)𝑓(𝑥)|𝑥⟩

𝑥∈{0,1}𝑛

|0⟩ − |1⟩

√2
=

1

√2𝑛
( ∑ |𝑥⟩

𝑥∈{0,1}𝑛

− 2|𝑥∗⟩)
|0⟩ − |1⟩

√2
  

 

- Apply next three operators 

 

[
2𝑛 − 4

2𝑛
∑ |𝑥⟩

𝑥∈{0,1}𝑛

+
2

2𝑛
|𝑥∗⟩]

|0⟩ − |1⟩

√2
 

 

- Then we continue the loop.  

 

After each loop the amplitudes of |𝑥∗⟩ is amplified and amplitudes of other states are reduced. 

After √𝑁 steps, the probability of getting |𝑥∗⟩ ≥ 3/4.  See Mark Oskin  

https://homes.cs.washington.edu/~oskin/quantum-notes.pdf page 44-46  

 

 

 Shor Algorithm (factorization) 
 

See  http://tph.tuwien.ac.at/~oemer/doc/quprog/node18.html  

 

 

 
Picture from https://en.wikipedia.org/wiki/Shor%27s_algorithm  

 

 

Quantum Fourier Transform 

 

 

 

https://homes.cs.washington.edu/~oskin/quantum-notes.pdf
http://tph.tuwien.ac.at/~oemer/doc/quprog/node18.html
https://en.wikipedia.org/wiki/Shor%27s_algorithm
https://en.wikipedia.org/wiki/File:Shor's_algorithm.svg
https://en.wikipedia.org/wiki/File:Quantum_Fourier_transform_on_n_qubits.svg


71  

  

Picture from https://en.wikipedia.org/wiki/Quantum_Fourier_transform  
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