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ML algo comparison:

http://www.cs.cmu.edu/~aarti/Class/10701 Springl4/MLAlgo Comparisons.pdf

The notes are primarily based on Aarti Singh and Tom Mitchell, ML-701 courses; also Bishop, pattern
recognition and machine learning, and Andrew Ng, machine learning notes

Preliminary
1. Bayesian vs Frequentist Probability
Observable data D = {t;, ..., ty}, model W, Bayesian uncertainty of the model, p(w|D), is given by from

likelyhood func  a priori
osteriori . D r -,
P p(w.p):p( IW_)p(WJ
p(D)

normalization

\/ p(Dlw)p(w) dw

i.e. uncertainty of w is a distribution function.

In frequentist view, w is given by the estimator, hence it is deterministic for given observables. To find
uncertainty of w, one would first find uncertainty of 2. (see my computational finance note page 20-22
for frequentists regression error and bootstrap/Monte Carlo for other estimation.)

Above equation provides another way to find W; this is W maximizes p(D|W)— maximizes likelihood
estimate, (MLE). In fact, the negative log of the likelihood function is the error function. Often times
likelihood function is made of products and error function is made of sums, so it is easier to differentiate
it.

Above Bayes formula gives uncertainty of the model. There is another form of Bayes for prediction
models. Let X be data, Y be label, W model

p(Y|X; W)~p(X|Y; W)p(Y)

This is useful for generative/discriminative classifier problem


http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/MLAlgo_Comparisons.pdf

e Discrete Parametric Model
Flip a coin N times get & number of heads. What is the probability of getting head from such coin?

Suppose freq = 8, there are (Z) possible configuration, and each has the same probability
P(D|6) = 0%(1 —9)N-« (BD-1)

opr(D|6 a
Then MLE says % =0=>0yr = IS
How good is our 8, 7 By Hoeffding inequality (see later section)
Foranyy > 0,

_ 2
P(lgMLE - 9true| >y) < 2e 2y°N
It gives a way to estimate the number of N needed in order to guarantee certain confidence level.

From Bayes formula, it’s natural to propose P(0), P(8|D) have same distribution—same physics. Hence

we are looking for conjugate prior. For
P(D|8) = 0%(1 — )N«

We let P(0) = Bern(6; a, b), then P(8|D) = Bern(8; ¢ + a,N — a + b)~0%T3"1(1 — g)N-a+b-1
then maximizing prior gets

aP(9|D)_0_>‘9 _ata-1
0 T MAPT N La+b-—2

Sowhen N, «a large, 8y, 4p~0 - Hence a prior knowledge becomes irrelevant.

e Continuous Parametric Model
Assume P(D|w) is product of iid Gaussian x~N (i, ¢) and one can show that the ¢ in Gaussian is indeed
the standard deviation by its definition

o? = E[x*] - (E[x])?

(for proof e.g. see my intro QM | note pages 6-8). Therefore

1 2 2
P(X: ,0) = | | e_(Xi_l"') /20
Then MLE gives

:& o2 =Z(Xi — Hyig)?
UMmLE N~ OMLE —N

Notice the sample variance in above form is biased, because



_ Si(E[xPD2EExamI+XiE[w?] _ R(E[X?]-E[W?]) _ R(u*+0?-u*-0?/N) _ N-1

2 2
Eloje]l = N N N v 9

Above we used these facts repeatedly,
E[X?] = E%[X] + var[X]
And
var[u] = a%/N
Therefore the unbiased o is

o2 = Y (X; — tmrp)®
N-1

This is the general idea behind linear regression of (x,,, t,) of N data points, using y, = > w;,xk, M-
polynomial (M+1 coefficients), find {w,,} to minimize the error function

N
1
Ew) =5 ) (o w) =t
n=1
Root mean square

_|2E (w)
RMS = N

Modified error function, taking into account of overfitting

N
1 A
E) =5 ) (o w) = 6} + 5 Iwl?

Where |w|? = w? + -+ + wj, called Ridge Regression. How to pick A? Cross-validation.

Assuming data t,, fits the models w,,, which are normal with variation, 1/a, pluses extra noise iid with
variation 1/,

N
p(tlx,w, B) = | [ NCtaly(xa,w), 1/8)
n=1



a \M+1)/2  «
pwla) = N(w|0,a~11) = (E) e ZW'W

If we maximize—(MAP)
p(wlx, t,a, B) « p(tlx,w, Bp(w|a)

or minimize (ignore terms not involving w)

N

RN

a
{y(xn, w) —ty}* + EWTW
1

n=

W]

which is the modified error function above. If use Laplace prior p(w) = Laplace(O0, t)~]_[e_TL, the
regulator becomes

Z \wl
— W
2 1

call Lasso regression.

These are aiming at overfitting, and making larger weight unfavorable. The general scheme is called
regulation

Inp(Dlwy) — M
M: number of adjustable parameters in the model. Common M are AIC and BIC
AIC = #parameters in model — 2 x log(L)
BIC = #parameters in model = logn — 2 * log(L)

n # data points, L maximized value of the likelihood function of the model p(x|w). They penalize
complex models.

¢ Entropy & Information Theory
This leads to the definition of information

h(x) = —logz p(x)

Moreover define
HE) == p() log, p(x)
X

Entropy of random variable x. Borrowed from physics: Gibbs entropy is a logarithmic measure of the
number of states with probability of being occupied.



Suppose there are N identical particles (bosons) and some energy states. For each energy state i, there
are n; particles. Given a set of occupation number {n;}, how likely the particles will end up in this
macrostate? Equivalently what is the multiplicity of this configuration, i.e. number of microstates in this
macrostate?

N!

Q=
[1in;!

Proof: suppose there were distinguishable particles. There were N! ways to line them up along a line.
Each line-up fixed one way to put the particles in the microstate, imagining cropping them by the order
of n;. This explains N!. Then dividing n; made them indistinguishable.

Boltzmann's entropy formula H = k In Q. When Vn; = {1,0}, H is maximum and it’s the most chaotic.
InQ n; n; n; n;
H=—r=~) N -1) —Zﬁ(lnni —=- ) = —Zpilnpi
1

using Stirling: InN! * NInN — Nas N — oo,
To see H retains its maximum not min, take second derivative

62H 6ij

To find H max, subject to the constraint, use Lagrange multiplier

== pG) Inp(x) +2 (Z p(x) - 1)

Letting above discuss be continuous, we get differential entropy, introduced by Claude Shannon, the
father of information theory

HIX] = —fp(X) InX dx

For more of interplay between Entropy, coding, information processing see: Thomas Cover, Joy Thomas,
Elements of Information Theory, Wiley 2006

2. Probability Distributions

e Binary
o Bernoulli — parametric with one parameter model, x € {0,1}

U x=1

_ X _ 1-x —
Bern(x|w) = p*(1 — w) {1 —u x=0



Elx] =p,  war[x] =p(1 -

o Binomial

Bin(m|N,u) = (TIX) W (1 — pN-m

N
E[m] = Z mBin(m|N,u) = Nu

m=0

N
varfm] = ) (m = Efm])*Bin(mlN, 1) = Nu(1 - 1

m=0

o Beta— conjugacy to Bern, b/c setting p(w) = beta — Since p(Data|W) = Bin, by Bayes,
p(w|data) = beta, same form of a priori p(w)

I'(a+b)

F(a)r(b) #a—l(l _ H)b_l

p(w)~Beta(ula, b) =

And

£ _a B ab
[kl = 25 varlul = (a+b)2@+b+1)

The Gramma functions there to ensure

1
f Beta(ula, b)du = 1
0

So

I'(a+ N +b)
N — mta-101 — N-m+b-1
m;w;ta & b> I'(m+ b)I'(N —m + b) # -

o

Multinomial
x = K — vector, {x; }¥ € {0,1}and 3x;, = 1

Let yp = p(xx = 1), then Y, = 1, b/c x;, = 1 are mutually exclusive and there is one and only
one equal to one. The distribution of x

K
pCelw) = | [
k=1

10



Consider a data set D of N independent observations x4, ..., Xy

mg

N K N
n, Znn
p(Dlu)=| || |u,f"‘=| |uk T

n=1 k=1 n=1
where my, is the sum of the value of the kth component of the N data points.

Then the joint distribution of the m;,’s is multinomial

~Mult(my,.., Mgl N) = 1_[
p(w) ult(my mglp, N) = m1,m2 Uy,

o Dirichlet

We show Dirichlet distribution

K
FXax) ax-1

p(D|w)~Dir(ula) = T(ay) .. T(ag)
k=1

is the conjugate of multinomial, that is

p(uID, @) < p(D|wp(ula) « 1_[#“"+m" Y= Dir(ula +m)

K
— F(a() + N) 1_[#0!1(+mk—1
F(a; + my) ...T(ag + mg) 11 k

Gaussian
o Normal

1 _L( — )2
N(x|p, 0?) =W6 207K

multivariate normal of D dimensional with, X, covariance and means, u , is

1 1 NTy—1(n_
N(x|w,X) = WIZIUZe (XTI (=) (Gauss.1)

If they are iid, & becomes I(d?)

D
pGlno®) = | [Nl o?)
n=1

11



And error function

N 2 N
Inp(x|u,0?) = z — W ——lncr ——1n27r

n=

Define A? = (x — u)TX~1(x — w), this gives the contour line, i.e. constant Gaussian on “distance”
centered to u.

Since ) is self-adjoint and positive-definite,
=uvuT

That is one can introduce new coordinate y in which the exponential of (Gauss.1) looks like yTy. This
allows us to reduce the number parameters in the model (via ¥), and treat it like diagonal.

Furthermore, one can show
E[x] = w, E[xxT] = uuT + 2, cov[x] =
o Conditional Gaussian & Marginal Gaussian
Split data set x = {x,, xp}, and
u= o) 2= (50 550)
then p(x,|xp) is conditional Gaussian with

Hajp = Hq + ZapZpp (Xp — Hp)

z:a|b =Xqq — 2:abzb Zpq (CG-MG)

And p(x,) is marginal Gaussian

p(xa) = N(xalﬂa: z:aa)

Reverse given gy, Zq|bs Ha» Zaq, ON€ can solve for piyq, Zpja, hp, Zpp and thus get p(xp|xg) and p(xp).

o Gamma Distribution

The conjugacy of normal is a Gamma distribution

1
pw)~Gam(4|a,b) = ﬁbala lg=ba

with

12



E[A]

SRS

Because

PAIX) o A%-1)F ¢~ Por=5 THoaConn)?
o Wishart

Consider N Gaussian data — multivariate normal
- N A
N
p(XI) = HN(xn“l. AT AZe 2 En=10m-1)*
n=1

The conjugate prior on mean is normal.
The conjugate prior on covariance is inverse Wishart.

See Murphy https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf

o StudentT

If we integrate above over A, creating Gaussian Mixture and increasing robustness, we get student T
distribution

D v
°° F(D/2+v/2) |AY/? N2 2
_ -1 vy — -
SeCel ) = | Nelu, () 6am (n]3,5) dn = ==t
With
E[x] = p, covla] = ——A"1
x| = W, covix =7
o Circular Gaussian
Consider
1 (r1=p1)%+(x—pp)?
plxy,x;) = —e

2mo?

Substitute =rcos 6 ,x, =rsinf,u; =rycos by, U, = 15sin 8, We get circular Gaussian
P(818,, m)~e™ e05(0=00)

its normalization is 0™ order Bessel function of the 1% kind.


https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf

3. Learning Theory

e Finite Hypotheses
Example of finite H: How many distinct decision trees (Boolean functions) of n Boolean attributes?

f(xq, ..., xp) = y where x;, ¥y = boolean

It equals to the number of distinct truth tables with 2™ rows = 2@ A smarter way is to write each f in
logical operator form

f:xl/\_le/\x3 ™

Since b number of bits can represent 2P different integers, so hypothesis complexity |[H| = 2™. If we
allow learning algorithms to have the ability to ignore some attributes, |H| = 3".

How many distinct decision trees with depth 2 of N Boolean variable?
|H| = N(N — 1)(N — 2)2*
Clearly |H| finite => the set of instances (train + test data) |X| finite
Active Learner: learner to pick what data to train. Training Scenario: trainer pick data to learner.

Here we consider random training set D. Training instances as well as the testing set are drawn from a
fixed probability distribution PD, independent of hypothesis.

Consistent trainer: For each training data D, if x=y, the trainer will classify the result c(x)=c(y). The setup
of all such hypotheses is called

version space = {h € Hypotheses: Consistent(h, D)}

Learner tries to come up with h hypothesis. h(x) estimates value of x. c(x) correct value of x for both
training and testing data.

Zxé'(c(x)#:h(x))

Training error (h) = PxeD(C(X) * h(x)) = D]

True error (h) = Pyepp (c(x) # h(x))

Because variance of the binomial distribution is p(1-p), 95% confidence intervals of True error (h) lies in

[1 — eTT0T¢rqin (h)] ETT0T¢rain (h)
ID|

errotiyqin(h) £ 1.96\]

e Haussler Theorem
A version space of H & D is said to be e-exhausted iff

14



erroTirye (h) <eVhe VSH,D

Haussler Theorem: |H| finite, D is sequence of random instances with classification ¢, for any € € [0,1],
the probability that the version space wrt H, D is not e-exhausted is less than

|H|e—€lP}

Proof: Let h4, ..., hy, € H be the ones whose error = €. The probability that the version space wrt H, D is
not e-exhausted is equal to the probability of at least one of hy, ..., hj, sneaks into the version space, i.e.
it makes correct estimate of all training data, which is

kY (1 — ol —€|(D}|
<(7) -l < Hle
because (1 — €) < e~ €. QED.
We have shown

P(3h € H 3 erroryygim(h) = 0 A errory,.(h) =€) < |H|e P} (HT-1)
=5

Let LHS = § = failure probability < 1, type-1 error.

{D}| =

In|H|-In&§ (HT-Z)
€

This also implies

In|H| —Iné
[{D}|

erroriye(h) =€ =
In other words, for h 3 erroti,qin(h) = 0, with probability at least 1 — 6,

In|H| —Iné
I{D}|

We are interested in PTIME algorithm (CPU complexity), i.e. probably approximately correct (PAC)

erroryye(h) <

learning

Let C be a class of possible classifications defined over a set of instances (|X| = n), and
hypotheses space H. C is PAC-learnable iff

For all ¢ € C, distribution PD over X, with €,6 € (0,1/2). A learner will with probability at least 1 — §

o . 11
output a h € H such that errori,.(h) < € in time that is polynomial in —5n and |c|.
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e Hoeffding's Inequality
Above discussion focuses on cases in which h 3 erroty,qin (h) = 0. What if that is not achievable we
now consider errori,qin(h) # 0. We need Hoeffding inequality

Let X4, ..., X;, be independent random variables bounded by interval [a;, b;], i = 1, ..., m respectively.
et = iZXi. Then foranyt > 0,

2mt?

P((E(8) - 8) 2 t) < e 2@b?

2mt?

P(|E(8) — 8] > t) < 2¢ S(@i-bo?

Proof: We first show Hoeffding Lemma. X random variable taking value in [a,b], with E(X) = 0, then

t?(b—-a)?
E(e*)<e s

Proof of claim: e*, E(.) are convex

etXSb_Xetb+X_aeta=>E(etX)S b eth _ a eld — g
b—a b— b—a b—a

where u = t(b — a), p(u) = —Au + log(1 — A + Ae¥), 1 = — —.

b—a

2
p(u) = dj@ +¢'(0)u+ (;b”(v)u?, for somev € t(a,b)
0 0 1
2

Proved the claim. By Markov's inequality: if X is non-negative rv, forany t > 0

[oe]

OoXP(X)dX > tJ P(X)dX =tP(X > t)

t

E[X] = jo XPO)dX > j

t

By the way the corollary of this is the Chebyshev's inequality

2

E [(X — E(X)) ] o2
P(X —E[X]|= k) =P((X —E[X])? = k?) < % =

Back to Hoeffding inequality, for s > 0. It satisfies assumptions of Markov and Hoeffding lemma,

because assuming E[8] > 8 (otherwise P ((E[é] -0) = t) = 0, the inequality is satisfied

automatically) and E[X;] — X; is in the range of [0, (b; — a;)] or [—(b; — a;), 0] thus

16



P ((E[é] -8)> t) = p(es(E[a]-@) > est) < w — p-st HE [e%w[xi]_xi)]

s2(bj—a;—0)* s2(bi—ay)?
< e~St | |e 8m?2 = e_SHZ 8m?

Taking max over s, we get

2m?2t?

P((E[6] -8) 2 t) < e TO=a)
QED.

e Agnostic Learning
Now we are ready to generalize (HT-1). Apply Hoeffding inequality, let X; be 1 when the learner get
correct estimate and 0 when it gets wrong, m the number of training sample. Hence b; — a; = 1, so for
anyh €H

P(errotiyye(h) — erroryqim(h) = t) < e~2mt*

Forallh e H

P(3h € H 3 errorypye(h) — erroriqin(h) =t) < |H|e‘2mt2
=5

Similar as before with probability at least 1 — §, all h

In|H|-1In 6
2m

errotiye(h) < erroripqim(h) + (AL-1)

¢ Infinite Hypotheses
What happens when |H| = c0? We use Vapnik—Chervonenkis (VC) dimension to characterize |H|. In
words, dimension of H is the size of the largest subset of X for which H can guarantee zero training
error, regardless of what the trainer classification function c is.

Formally, a dichotomy of a set S € X is a partition of S into two disjoint subsets. A set of instance S is
shattered by H iff for every dichotomy of S there exists some h € H consistent with this dichotomy. The
VC dimension of H over X is the size of the largest finite sets of X can be shattered by H. If arbitrary
large finite sets of H can be shattered by H, then VC(H) = co.

Example: SVM, VC dimension of lines in a plane R?? VC=3. 3 non-collinear points are always binary
separable, 1/0 loss function. By induction, one can show VC(linear separating hyperplanes in n dim) = n
+1.

17



Reversely given VC(H), we know there are VC (H) points that can be separated by the hypotheses, so
the hypotheses space is at least

|H| = 2Vt

Vapnik Theorem:

1 2 13
(HT — 2) changes tom > . (4 logg + 8VC(H) log?>

VC(H) [log#?}_l) + 1] + log%

m

(AL — 1) changes to errory, e = erroryqim +

e Mistake Bound
Question: how many mistakes can the learner make before the learner finds the best hypothesis?
Consider halving algorithm for binary classifications:

-For a given data point, output the estimate value by each hypothesis in the hypotheses space.

-Kick out hypotheses that misclassify instance from the hypotheses space, and repeat. A mistake is
recorded when majority hypotheses (If tie, pick them at random) misclassify the instance.

The worst case, maximum number of mistakes, occurs when every decision turns out to be wrong and

only the smallest number of hypotheses being eliminated, i.e. “;—l It can be achieved when H is the

power set of X. After kth mistake,

| Hinitial

|H| becomes T

Hence the maximum mistake is

log; [Hinitiall

Let M4 (h) be the maximum number of mistake made by algorithm A for some hypothesis h over all
possible training sequence (worst case). The optimal mistake bound is

opt(H) = min_ maxM,(h)

A€learning heH
algorithms

Optimal Mistake Bound Theorem:

VC(H) = Opt(H) =< Mhalving(H) = 10g2 |H|

18



The first inequality on the left is due to the fact that regardless of what algorithm is in use, there is a set
S 3 |S| = VC(H) and each point in S is distinguishable from the rest, hence there is h that contains at

least |S| number of classifying functions that can misclassify them.

Supervised Learning—Parametric

4. Discriminative: Generalized Linear Models: Least Mean Squares (LMS), logistic

regression

N
pCelxw,p) = | [Nalw" oG, 1/8)
n=1

W model, ¢ base function. When ¢ (x) = x, we have linear regression; when

¢x) = 14+e™™*

Logistic regression. Negative log gives error function

N
1
Ep(w) =5 ) (tn = w'd(x)”
n=1

And minimizing it gives
wy (PTP) TPt
If above batch calculation becomes computationally intense, use stochastic gradient descent
w@D = w® —nvE,
WD = w (b, - wOT ),
Choose 7, learning rate, so that it converges. Decay learning rate or use momentum.

o Regression error

Bias-variance tradeoff: increase variance in observation will reduce bias in determining the slope.

x features, D data distribution, t model, y label, E[t| X] estimates

Ep[(y(x,D) — Elt|x])?] = (Eply(x,D)] — E[tIx])* + Ep[(y(x, D) — Eply(x, D)])?]

(bias)? variance

e Exponential Family Distribution
p(y;m) = b(y) exp(n"T(y) — a(m))
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y label, x feature/attributes-measurement, T (y) prediction, n exponential family parameter, 8 model.
Let h(x) = E[y|x] be learned hypothesis. Linear model says model coefficients are linear

n=0T«x

e Linear regression

1 1 1
p(y; 1, o)~ exp (— — - u)z) = exp (— ;yz) exp ((g)y - ;u2>, hence

202
n

h=Elylx] =pu=n=0"x

Thus log likelihood

1
1(6) = log| [p(rix; ) ~ =2 > (v - 67x)*~5(h - y)?
Algorithm: steepest decent
Fordatai =1,..,m, x € R™, repeat until convergence, for every j

m
0, =6+ aZ(y@ — hg(x))x®

=1

The traditional route to derive linear regression starting from
=97 bi ; _ T2
y = 60"x subject tomin}(y — 6" x)
We can also propose non-linear functions, such as Fourier, wavelets,... other orthogonal

The problem is exact solvable. Let X = chind{(1,1, ...,1)7, (X, ...,X,,)T} be n X (D + 1) matrix. Its
columns are n data points of dimension D. Let Y be label.

1 X,
x|l %
1 X,

Our goal is to learn W, vector of (D + 1) dimension, such that

mmi,n(IIY —XWIF+AwW(I®, 220
Solution

W= X"X+AD7'XTY
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Projection of test data x
X = (x, W)

W is in fact in the row space of X, since

1
XTX +2DW = XTY => W = X" (Y — XW)

a

The dual problem of linear regression:
Let W = ¥"a;X; ,X; = ithrow of X. Then
1
a ZE(Y_X I/JJ/) =XXT+ D"ty
XTa
What is XXT?

(XXT);; = (X, X))
j)
J

>

KX
By the dual solution

Projection of test data x

>

2= (W)= a8
i=1 (

’
K(x,X;)

<

Thus the computation of projection involves only inner products (kernel) of training data.
Kernel Trick
If one wants to do quadratic regression, x;, x, are old features,

y~x2 4 x% +V2x,x,
One doesn’t have to transform ®(x;, x,) = (xZ, x3,v/2x,x,) then apply ordinal linear regression.
Instead use the dual solution, since the dimension of a is independent of feature space.
Replace K (u,v) = (u, v) by

K(u,v) = (u,v)?

because
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CG-Cop=( 5 ) =2 )

Other common kernels include

K(u,v) = (u,v)+1)4

lu-v]|?
K(u,v)=e 202

K (u, v) = tanh(u(u, v) + v)
All of them allow to solve non-linear regression in linear complexity.

e Logistic Regression
In linear regression y continuous, here y € {0,1}. P(Y = 1|X) = ¢

p;$) = ¢¥(1 — ¢)' 7Y = exp| log (%) y +log(1 — ¢) |, hence
n

11
T+e™m 1+4e0"x

h=Elylx]=1+¢+0(1—-¢)=¢ =
our goal is to maximize

(6) =1og | [pOr1xi6) ~ ) ylogh+ (1= y)log(1 ~ h)

It turns out to be the same algorithm, because steepest decent

ol
5= (/= Wx == )

Repeat until convergence, for every j

m
6, =06+ aZ(y@ — hg(x))x®

i=1

We now show the boundary is linear. Suppose X is 2-dim, we show in the (x;, x,) space the boundary
surface is a line.

1
p(y = 1|x1lx2) = ¢ = 1 + ew0+w1x1+w2x2

SO
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p(Y = 1x1,x3) = eWotWiX1+Wyx;
p(Y = 0Jxy, x2)

which can be > or < 1. At the boundary, itis 1, that is
WO + W1x1 + szz = 0
is the boundary.

To avoid overfitting, use regulation, assume p(w)~N (0, k), then use MAP

2
pw|Y, X)~p(Y|X,w)p(w) => l(w) = 1081_[P(3’|x; w) — Z ;Vklz

which has unfavorable view toward larger w;’s.

One can change to non-linear boundary by using kernel, w = Y; a;p(x;)

1 1
T o-WTpG)+D) 1 + e- Q@K@ X)+b)

P(Y =1|x,w) = 1

e Poisson Distribution

-2
p(y; P) = ey—,ly = exp(ylog1d — 1 —logy!) , hence

h=Ely|lx] =A=¢€" = P
It turns out to be the same algorithm, because [~y logh — h and steepest decent

al

55 =0 —hx

Repeat until convergence for every j

m
91 = 9] + aZ(y(‘) - hg (X(i)))xj(l)

=1

e Softmax Regression
y €{1.2, ..k}

k

p0i9) = | [0 = exp (108 (52) 702 + -+ tog

4

Pr-1
(o7

T(y); = 6j;, hence

)T0)r + log(@)

(LG-B)
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T

d). eeix

mi =log—==6]x > ¢; =—
(o7 Z}e J

Algorithm: maximize

T MO) {y(i)=l}

1) = Z logp(y©|x®,0) = Z 1og1_[ O

Example digit recognition using TensorFlow with 92.44% accuracy

Courtesy Yijun Xiao https://nbviewer.ipython.org/github/yjxiao/tensorflow-
basics/blob/master/tf tutorial.ipynb

¢ Fisher Linear Discriminant Analysis (LDA)

4+

L L
-2 2 8}

Picture from http://web.media.mit.edu/~javierhr/files/slidesPCA.pdf page 21

The goal is to project data to lower dimension while preserves their classifications.

Let C; , = class, x = data with some dimensional, so m; is a vector,

m; = N2x1—12

xECl

2
Sp = (my —my)(my —my)", Sy, = Z Z (x - ‘m]-)(x - mj)T

j=1x€C;

Then our task is to find the projection direction W that
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WTSgWw maximize the distance between two projected class means
arg max =
s1m7 WTS,W  minimize sum of distances of each date to its class mean (variance)
J

Derivative wrt W, get
SwASEW = JW
Then
W = Syt (my —my)
Predict test data

argmax W7 (x — m))
J

For more than 2-class, see http://www.facweb.iitkgp.ernet.in/~sudeshna/courses/ML06/Ida.pdf page 8

5. Generative: Gaussian discriminant Analysis, Naive Bayes

e Bayes Optimal Classifier
X: data; Y: label

PX =x|Y =y)P(Y =y)

PO =ylx =) =——p =0

discriminative: map inputs directly to decisions, i.e. learn p(y|x)
Generative: learn p(x|y) and p(y) then use Bayes. Hence we want to maximize

argr}anP(X =x|Y =y)P(Y =vy)
=y

Key: find decision boundary.

e Naive Bayes Assumption
X is conditional independent of Y given Z iff

PX=x|Y=y,Z=2)=PX =x|Z=2),Vx,y,2
Or equivalently
P(X,Y|Z) = P(X|Z)P(Y|Z)

Let {x4, ..., x4} be vocabulary, y ={spam, not-spam}, Naive Bayes says

p(xy, s Xgly) = Hp(xily)
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e Naive Bayes Algorithm
Assume the likelihood is Bernoulli, use train data to get p(x;|y) = freq occured for each word for
both spam and nonspam (why? See MLE Bernoulli distribution (BD-1)).

Then find y for test data to get

max H p(x;ly)

Remember to apply Laplace smoothing because for small train set there are certain words, either
p(x|spam) = 0 or p(x|nonspam) = 0, then maximizing [[p(x;|y) becomes absurd. Add Laplace
smoothing is equivalent to apply conjugate prior and doing MAP.

Now show Naive Bayes boundary is linear. X =< X5, ..., X, > .

pO=1X) _pXly=Vpe=1 _ __ pO=D_ pr&ly=1 _
p(y = 0|X) _ p(Xly = 0)p(y = 0) Spr=0) " SpX[y = 0)

Let P(X;|Y = 1) = 6;;,X; = {0,1}

p(Xly=1) z p(Xily = Z -0
og—2— =Y Jo X;lo +(1-X)lo
8 &y = 0) gp(X|y—0) gelo (1 =%) gl—e

e (Gaussian Naive Bayes (Gaussian discriminant Analysis)

If the feature is continuous, say digit detection. x; are pixels, y = {1, ...,9}. Assume Gaussian likelihood

and assume Naive Bayes assumption, then compute
1) u; = average pixels over training data
2) 67 = variation pixels value over training data

for each position i, and each label y. Then determine

max 1—[ p(x;ly)

for the testing data.
Now show Gaussian Naive Bayes boundary.

pO =10 _p&ly=Dpor=D _ __,  po=1 =~ pXly=1 _
p(y =0|X) pXly=0)p( =0) Sy =0) " BpXly = 0)

If we want to make the boundary linear, we have to have

y~Bernoulli(¢)
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x|ly=0~N(up,Z2), x|ly=1~N(u,X)

share the same covariance matrix (class-independent of y) to kill 2" order x;, then

py=1) pXly=1) _ 1-9 Wiy=1—Hiy=0 vy Hiy=1"Hiy=o )
logp(y=0) +1 S Xy=0) log 3 +3 207 > 207 xi=0 (NB-G)
const const

Ng, note: Generative Algorithms

In comparison to logistic regression: (NB-G) remains us of the similar formula for logistic regression

P(Y = 0)P(X|Y = 0) 1

POY = DPX|Y =)+ P(Y =0)P(X[Y =0) ., P(Y =DPX[Y =1
P(Y = 0)P(X|Y = 0)

P(Y =0|X) =

1+

1

py=1) , pXly=1)
1+ elogp(y=0) ' logp(X|y=0)

(NB-G) shows the last line above is

1
1+ew0+§jwixi

P(Y =0|X) = (LR-NB)

Hence if we have Naive Bayes assumption, Gaussian distribution, and class-independent g;, Gaussian

Naive Bayes is reduced to logistic regression provided we have infinite training data. If NB assumption
doesn’t hold, logistic regression is better. If the linear decision surface assumption doesn’t hold, then

Gaussian NB with class-dependent g;,, is better.

Asymptotic behavior, given finite training data, n, d features X =< X3, ..., X4 >

d

€LRn = €ELR0 T "
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logd

EGNBn = €EGNB,o T n

e Latent Dirichlet Allocation
Recall Dirichlet distribution 8 is conjugate prior of multinomial. LDA groups words w into set of N topics
z. z are the latent features. Hence this borrows idea from NB but it is an unsupervised learning.

()
-
N N\ N\ \..
k/' \_/ —'\_/'_'
o 6 z Wy
M

David Blei, Andrew Ng, Michael Jordan, http://imlr.org/papers/volume3/blei03a/blei03a.pdf page 5

Following the diagram, the probability of the corpus given models &, f of M documents is

M N
p0lap) = | [ p@aa) | [ | p(aloapoua,iza, ) | doa
d=1

n=1zq,

where 6~ Dirichlet, z, w~ Multinomial. If N is unknown a priori and is to be inferred from the data, see
extension of LDA, http://people.eecs.berkeley.edu/~jordan/papers/hdp.pdf

6. Discriminative: Artificial Neural Network

e Forward Propagation for Prediction

L]

Input Layer
Hidden Layer

Output Layer
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http://jmlr.org/papers/volume3/blei03a/blei03a.pdf
http://people.eecs.berkeley.edu/~jordan/papers/hdp.pdf
https://en.wikipedia.org/wiki/File:Feed_forward_neural_net.gif

Picture https://en.wikipedia.org/wiki/Feedforward neural network

Each input and output node represents one feature of input or output data. Following the picture
suppose we have 1-hidden layer with 4 nodes (logistic neuron), and recall sigmoid function

1
14+e*

o(x) =
For each one of the 4 outputs, j = 1, ... 4
0;(Xy, .., Xy) = a(wy; + Z whja(w(’}j + z wl-thi))
h i
Compare to (LG-B), the boundary here is definitively not linear. Forward propagation means follow the

arrow to make prediction.

e Backpropagation for Training
Find the values of W = {wi’}, Wy, - } of each edge. Use MLE

- — )2
argmwl/nz:(Y 0)

train

Or MAP

arg min [ Z Y-0)2+c Z |W|2]

train WEW

Backpropagation Algorithm (MLE)

- initialize all weights to small random numbers, use forward propagation compute hidden layer 0, and
output layer values, then use gradient decent to update weights

Use either Batch gradient decent (also called Vanilla Gradient Descent): Compute VE, [W] for all data D,

EWl =5 (v~ 0

train

oE l l l l l
>z 2 —(¥' = 0H0'(1 - 01 0L
6Wh y
train 8t
o l l l l l l l
F= > = (r'=0Y0!(1 - 0) 0} (1 - 0w, X]
ow; ,
train é‘l
8h

update W « W —nVEL[W]
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wp, < wy + 1680}

wlt « wy, +n6p X}
Or stochastic gradient descent:
loop through each data, compute V;E;[W], update W « W — nVE;[W], loop again
-repeat

Such algorithm doesn’t guarantee stop at global minimum.

e Online Perceptron Theorem

Basis for Natural Language Processing. See Discriminative training methods for hidden Markov models:

Theory and experiments with perceptron algorithms by Michael Collins
http://www.cs.columbia.edu/~mcollins/papers/tagperc.pdf

or lecture Machine Learning for Natural Language Processing,
http://www.cs.columbia.edu/~mcollins/courses/6998-2012/lectures/lecl.3.pdf

Consider the simplest perceptron net

Instead of logistic neuron

o(z) = 1+e%

use

1 z=20

o(2) = step(z) = {0 2

and

Tony Jebara http://www.cs.columbia.edu/~jebara/4771/notes/class4x.pdf page 4

We are to minimize
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B step(-WTX;)) Y, =1
Z (r =0y = Z { step(WTX,)) Y, =0

train train
If we use Y = {£+1}, above becomes
D step(iWTXy)
train
Since 0-1 loss is not good for differentiation, we decide to use perceptron loss
E= ) LX)
iemissclassified

Apply gradient decent,

Online Perceptron Algorithm

- pick initial small W, loop training data
- if i misclassified
w; = w; —nVyE = w; +nYX;

- repeat

Under certain conditions the online perceptron algorithm converges to zero error in finite time.

Online Perceptron Theorem:

Let a sequence of training samples (X;, Y;)7%, be given. Suppose that ||X;|| < r for all i, and the data
with Y = £1 are separable with margin y. total number of mistakes that the perceptron algorithm
makes on this sequence is at most (r/y)?

Supervised Learning—Non-parametric
7. KNN

In the next 3 sections we will focus on non-parametric models: the raw data may not exhibit any
functional forms.

e C(losest Mean & Kernels
Classify test data base on the distance to the closest class mean,



Nc,

: 2 1
argmin|lx —xc,[|” , xc, = N Z Xj

]BxJECL

) 2
Since ||x — xci” = [lxll* = 2(x, x¢,) + {xc, x¢,), hence

arg min ——Z (x,xc.) +— z (xi, xj)
i9C; i

KGoxe) NG 4 KCxip)
This reminds us the same kernel trick for linear regression can be applied here.

e KNN
Majority vote, Larger K => predicted label is more stable; Smaller K => predicted label is more accurate

¢ KNN Density Estimate & Kernel(Local) Regression
Probability density estimate: counting discrete points within the region

||x] x||<A
R J A

X — ———
p(x) = -
n total points, A size of the local region. Or replace

1
||xj—x||sA

; (k1)

by

ﬁ e 242 (k-2)

So both p(x) act as smoother.

Kernel Regression: instead of counting, we average local data points to make prediction.

Let X; be the position of ith data point, ¥; be its value.

Nadaraya—Watson kernel regression says

Yiei Kn(x —x)y;
Yic1 Kn(x —x;)

iy (x) =

where K any kernel e.g. above (k-1), (k-2).

Locally Weighted Linear Regression:
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_(x=x)?

y = 8Tx subject to meinz wi(y; —0Tx)?%, w;=e 272
7

y;, x; are ith data point (vector-value), x in w; is the point to evaluate. Thus this is a continue learning
model.

8. Support Vector Machine

e Optimal Margin Classifier
Decision boundary wTx + b = 0. Data feature x, label y = {+1}.

wx+b<0

Page 11 http://www.cs.cmu.edu/~aarti/Class/10701/slides/Lecturell.pdf

In graph above, y; = 1 points are separated by a hyperplane, so all points satisfy
ywlx+b) = a
Points on lines wTx + b = +a are called supported points. The margin (cushion of error)

2a

2y = +——
lIwll

Proof: consider one of the supported points, x,, on wTx + b = a. Denote its root to w x + b = 0 to be
p. Then the vector

L w
X, =V
P = Vi

Sincepinonw’x +b =0,

WT<X —yl)+b—0
P wll
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andx,isonw’x +b =a,
T —
wix, + b=a
Therefore

wlw a

Y =q=> Yy =—
lIwll lIwll

We have 3 unknowns: w, b, a. But clearly one can multiply them by a constant and the boundary line
won’t change. So let’s fix a = 1.

Therefore our goal to maximize cushion of error becomes, i.e.
mil?%uwuz s.t. yiwTx; +b) =1 Vi (SVM-1.1)
w,

Then to predict testing data x, compute

sign(wTx + b) (SVM-1.2)

If the set is not linearly separable (above has no solution), soft margin approach, allow misclassified, say
data i on the wrong side of its corrected supported line, and let &; be slack variables.

mig%llwll2 +CY& s.t. yy(wlx;+b)=1-¢& and & =0 (SVM-1.3)
w,

and clearly

0 yiwTx; +b) > 1

& = max({ yiwix; +b)} 1—y;wWTx; +b) y;(wix; +b) <1

predict

called Hinge loss
Consider the case y;(wTx; + b) < 1, §; « distance from the its correct side supported vector line.

If 0 < y;(wlx; + b) < 1, x; is on the correct side but it stays in the error margin between its correct
side supported vector line and the middle line.

If —1 < y;(wTx; + b) < 0, x; is on the wrong side and in between the other side supported vector line
and the middle line.

If y;(wTx; + b) < —1, x; is on the wrong side and further away from the other side supported vector
line.

There is another way to count for non-linear separable case.
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1
mil?zllwll2 + C #mistake s.t. y;(wTx; +b) > 1
w,

This turns out to be non-QP. And the #mistake term makes this to be 0-1 loss.

Hinge loss

0-1loss M_Og loss

-1 0 1 yilwTx; + b)

For comparison we add in logistic regression classification, recall for logistic regression y; = {0,1}

TOD =T =
and the loss

log(l + e(WTxi+b)) yi=0

loss(f(x),y:)) = (i — Dlog(1 = f) — y;log(f — 0) = T
log(l +e-(w xl”’)) yi=1

If we make it compatible with current discussion y; = +1, we see that loss function is also a function of
yi(w”x; +b)

loss(f(x;),y;) = —log P(y;|x;,w,b) = log(l + e‘yi(WTxi+b))

e Multi-class SVM
Simultaneously learn multi-class say y has 3 values.

minz w0 4 CZ Z fgy)
W,b j
y J

| V£V

wODx; + b0 > w®x; +pO) 41— 51(3’)’
>0, vy#y,vj
§7 =20, Yy #YjVj

This produces 3 sets of wk, b¥, &k k=1,2,3. Each set provides a boundary to separate its kind to the rest
of other kinds. If the predicted class fells into multiple classes, use the one has longest distance to the
supported line, which is

wlx+b-1
[lwl]

(SVM-2)
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One can also choose to do this not simultaneously, i.e. use usual SVM for each kind against the rest,
then apply (SVM-2). But if we solve multi-class simultaneously then the 3 sets of w, b will have same
scale. So predicting y(x), (SVM-2) can be simplify to

y = argmax (Wk)Tx + bk

e Lagrange Duality
To solve (SVM-1.1), we construct Lagrange

1
Lw,b) =S IWI? = ) ailyiw™sx; +b) = 1], > 0
i

Then

adaz0

1
max (L) = {— lwll? if w,b satisfy constraint in (SVM 1.1)

00 otherwise

because if w, b satisfy the inequality constraint in SVM-1.1, put a; = 0, which tells us for non-supported
points a; = 0. This is also part of KKT condition. Then SVM-1.1 is equivalent to

min max (L)
w,b a3a=0

We know under KKT conditions,

max min(L) = min max (L)
ad3a=20 w,b w,b a3a=0

Let us see what the dual problem is. Find migl(L),
w,

VwL = 0 (This also met KKT ) =>w = Z a; ViXx;

i vector
comp.

prod

L
and FTe = 0 (This met KKT ) =>Ya;y; =0

Plugging them in migl(L), we get dual problem:
w,

1
max %151@) = max Z a; — EZ yviyjaiaix;x;) | s.t. a; =0 and Z a;y; =0
ij

i
This is a quadratic programming problem with one local optimum.

After we find a; (dependent on (x;, x;)) solves the dual problem, then we get
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*
w = Z a;YiXi

4

~max wTx; + min w*Tx;
Dy;j=-1 i3y;=1

2

b* =
which is the midpoint of the y-intersection of two supported points. Or

b* =y, —wTx, foranyk 3 a, >0
since non-supported point whose a; = 0.

And SVM-1.2, i.e. to predict test data x, becomes

wlix+b = Z a;y; {(x;,x)+b
N——
i€ESupported K(xi,x)
vectors

Since decision surface depends on kernel, kernel trick can be applied.

Recall in the preliminary we showed that Vapnik—Chervonenkis dimension VC(linear separating
hyperplanes in n dim) = n + 1. Hence regardless how initial data seem to be non-linear separable, one
can lift up the dimension (using kernel) so that it can be separated, but this is likely to result overfitting.

So we resolve it to the second method: SVM-1.3. The correct Lagrange is

i 2

1
L(w,b,§,a,1) = §||W||2 + Cz& _Zai[Yi(WTx +b)—1+¢] —zrifi

and the dual problem

a

1
max Z a; _Ez yviyjaiaix;x;) | s.t. C = a; =0 and Z a;y; =0
ij

4

This is quadratic programming problem with a single local optimum and C is found by cross-validation.
Again kernel trick can be applied.

After solving «;,
w* =Ya;vix;, b* =y, —wTx, foranyk3C > a, >0

e SVM Kernel
For non-linear separable set, try features of features

¢ = {x1'x1x2:x121 )
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to increase dimension to make it separable. After changing feature space, we solve

1
max i —EZijyl-yjaiaj T (x)P(x) | s.t.C=a; 20 and Rajy; =0 (SVM-3)
K(xixj)

After solving «;,
w* =Ya;yp(x), b* =y, —wlp(xy) foranykd3C > a, >0
The boundary is non-linear
wlgp(x) +b=Ya;y;K(x;,x)+b=0
Predict test data

sign(wT¢(x) + b)

e Sequential Minimal Optimization Algorithm (SMO)
invent by John Platt https://www.microsoft.com/en-us/research/publication/fast-training-of-support-

vector-machines-using-sequential-minimal-optimization/

or simpler version http://cs229.stanford.edu/materials/smo.pdf

We are out to solve (SVM-3).

-Iterate over all pairs ;, ;. Keep other constant

-Setbound L < a; < H

ify® = y0) L = max(O, aj — ai),H = min(C,C + a; — a;)
If y® =y [ = max(O, aj +a; — C),H = min(C, a; + a;)

-Eliminate a;, we get a quadric function in @;, which has minimal value at

Vi [Zz ay (K(xl'xi) - K(xl:xj)) - - }’j)]
ZK(Xi,Xj) — K(xi,xl-) - K(Xj,x]')

*_ . —
4 = q;

Then set

H a}‘ >H
L a; <L
a; otherwise

(Zj:=
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And

— previous
a; =a; + yl-yj(aj - afj)

-repeat till converge

9. Tree

e Information Gain
Let X; be features, Y label, find the first feature to split based on what criteria? After the first step the
algorithm will repeat itself

Entropy of Y

H(Y) == ) P(Y = y)logP(Y =)
y

After splitting to {x} branch (typically 2 branches per root), conditional entropy

HYIX) == ) P(Xi =) ) P(Y = yIX; = x) log P(Y = y|X; = %)
x y

The choice of the splitting feature X; and criteria branch {x} is to maximize information gain

argmax[H(Y) — H(Y|X;)]
X
Or minimize

argmax H(Y|X;)
ix

To find {x}, for classification Y boundary given by majority vote, for continuous Y uses regression,
constant, lin fit and detect jumps.

Avoid overfitting: fix maximum number of depth and leaves. Use chi-square test for independence to
reduce number of features. Apply pruning so that pruning a sub edges from the bottom will improve
results on a validation set.

10.Feature Selection, Model Selection and Ensemble methods: Boosting, Bagging

e Feature Selection
Approach 1: Score each feature and extract a subset

Common scoring bases

39



- training single feature classifier and cross-validation compare accuracy
fi:Xi ->Y
- use mutual information

P =xY =)

1(X;,Y) = ZP(Xi =x,Y =y)log
X,y

PX;=x)P(Y =y)

- Use y? statistics to measure dependence between Y and X;.
Common selecting steps
- choose the highest scoring feature, Xj
- score the rest of feature conditional on X}, e.g.
score(X;) = Accuracy(predictng Y from X; and Xp,)
score(X;) = I1(X;, Y|Xp)

Approach 2: Regulation (MAP)
w = argmMi/nZ —log P(Y|X, W) + A||W||

Try LO [[Wllo = #{i|W; # 0} or [[W]];.

e Adaptive Boosting (AdaBoost)

m data points. Having a bunch of simple classifier (unlike to be overfitting, but hard to increase accuracy

on its own), each
hp: X ->Y={-11},t=1,..,T
Boosting together
H = sign(¥ache)

How to pick a;?

AdaBoost inventor Robert Schapire, http://rob.schapire.net/papers/explaining-adaboost.pdf

e Initial data distribution D; = 1/m,
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Train weak learners hy _r using D, (what does it mean? Say m = 2, D, uniform gives the
original data. Say in the next step D, (1) = é, D,(2) = g We could pretend there were 2 data
pointsati = 2.)

Compute error

er = XPp, (he(x) #y;) = ZDt(i)5(ht(xi) #y), 0<e<1
Let

1 1_et at>Oe<—
at=§ln -

e
t a;<0e>—-

Move to D;,; foreachi =1,..,m

D (i) exp [_at yihi(xi)]
+1

21 De (i) exp[—ary;h;(x;)]

Dt+1(i) =

Assume error < % (random guess), D;,1 (i) increases from D, (i) for ith point if h;(x;) # y;. Otherwise it
decreases.

Repeat tillt = T.

Proof of Adaboost: Since

iti b ti b
1 < ePositivenumber g () < egnegative number

m m
1 1
total Adaboost error = EZ S(H(x;) # yi) Saz e Vif(x) = | | Z;
i

i

where f(x) = Y a:h:(x), H(x) = sign(f(x)), and

because Dy, (i) = —

m
Z, = Z D, (i)e~yihe(x0)
i

1 e Yif(xp)
[1e Z¢

and Z‘{Zl DT+1(i) =1.

Thus Adaboost is to minimize the upper bound, via minimize Z; in each iteration
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Z, = Z D.e% + Z Die % =eet + (1 —e)e
i3y;#he(x;) i9y;=h¢(x;)

1—€¢

Then Z—iz =ge% — (1 —¢€)e % =0= e?% = ). This proves the choice of a;. Plugging a; in Z,

ﬂzt=nmmp(_zz(g_et)z)

Showing even for weak learners that are slightly better than random guess, Adaboost converges
exponentially fast, but could result overfit.

e Bagging-bootstrap aggregating
1.Run independent weak learners on bootstrap replicates (sample with replacement, cross validation)
the training set

2.Average/vote over weak hypotheses
No iteration update weight, only variance reduction

Unsupervised Learning
11.Clustering

of

Similarity is in form of distance metric: Euclidean, Manhattan, Minkowski, Canberra, ... and correlation:

Pearson,...

e Hierarchical Clustering (<100 dataset)
Hierarchical algorithms: single-linkage, average-linkage, complete-linkage, centroid-based, minmax...
They are Bottom-up algorithm. They are simple to implement but less accurate and computational
expensive (O(n? logn). 0(n?) for pair of distance, and 0 (nlogn) for sorting).

Single Linkage Algo

Distance of an element, u, to the set V = mel‘;l D(u,v)
v

Distance between two sets= min D (U, V)
u€eu,vev

- link pairs that have the shortest distance

- Treat the linked pairs as if they are elements, repeat above, continue till there is only one cluster.

Complete Linkage Metric
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Distance of an element, u, to the setV = mg&(D(u, V)
v

Distance between two sets= max D(U,V)
ueu,vev

Average Linkage Metric

Distance of element, u, to the setV = ave D(u,V)
ve

Distance between two sets= ave D(U,V)
ueU,vev

Centroid Linkage Metric

Distance of element, u, to the set V = Distance from u to centroid of V

Distance between two sets U, V = Distance between centroids of U, V

Minimax linkage Metric

Define

Radius of a set: R(U) = min r;léiﬁ(D(x’ y)

which is the smallest radius of the ball that encloses U and whose center is one of the elements of U.
Distance of element, u, to the set V= R(uUV)

Distance between two sets U,V = R(UUV)

Single vs. Complete Linkage

Complete Linkage assumes isotopic, convex shapes but robust to outliers; while Single-linkage allows
anti-isotopic, non-convex shapes but sensitive to outliers.

ORRt
[ ] [ ] =

Both single and complete linkages will put above graph into two clusters at some level. However, if
there are outliers in between the two clusters, single-linkage may pull the two clusters together, at no
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level recognizes they’re two separated clusters. That is because single-linkage only consider min
distance. Things can merge into one even if there are elements are very further apart in the cluster.

e Partition Clustering (large dataset)
Partition algorithms: K-mean, Gaussian Mixture-Model (EM) based clustering, ...

K-Mean Algo
-pick k initial centroids.
-assign each element to one of the closest centroids.
-update centroid location, reassign each element
-stop if none element change membership.
Computation: 0(nkl), n=elements, k=centroids, [=iterations.
Shortcomings: sensitive to outliers, highly depend on initial centroids.
K-medoids Algo
Replace centroid by medoid

robust to outliers.

K-Mean is to minimize potential, y; centroids, C; clusters.

. . Ek z 2
1’1’1#11'1 mcll'l ||[,ll —x]”
i=1j3C0)=)

12.Expectation Maximization (EM) & Factor Analysis

This is a generative approach. We mix uncertainty in classification. < X3, ..., X;; > n mixture data points.

They are classifications < Z3, ..., Z,, > are unobserved.
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e (Gaussian Mixture Model
k =1,..,K, best K can be later found by cross-validation. Assume

P(X;|1Z; = K)~N(u, 2), i = 1, ... ,n

Recall in Gaussian Bayes Classifier we show when o is independent of k, boundary is linear. Here we
don’t assume that. Parameters 8 = {uy, 2, P(Z = k)}

We are not going to maximize total probability
arg max 1_[ log P(X;,Z;)
i
The value of Z; is soft classification, so instead we maximize the expectation of the total probability
arg max 1_[ Ep(z;x,0)[log P(X;, Z;,0)]
i

Thus

1

/det i

arg max [I; Xk P(Z; = k|X;,0) log P(Z; = k) exp <_%(Xi W) E (X — H'k)) (GMM)

P(Xi|Zi=k)
EM algorithm
-E step:

Randomly pick some initial model parameters §®) = (P (z = k),u,(f),Z,(f)}, and compute

P(X;1Z; = k,6)P(Z; = k)
Kk P(XilZ; = k,6®O)P(Z; = k)

P(Z; = k|X;,6®) = 5

Then formulate expectation value (GMM)
-M step:

Maximize above expectation, arg Gm(tzﬁ() HiEP(Zilxi,é‘(t))[log P(Xl-,Zi, 9(t+1))] , update

(t+1) _ YiXP(Z; = k|X;,60)
M % P(Z; = kX, 00)

% (%= 1E0) (X - 1) P = KX, 69)

(t+1)
D -
k YiP(Z; = k|X;,6®)
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_ %iP(Z; = k|X;,00)
~ #data points

PED (7 = k)

Hence used to be § counts, now all become soft probabilities.
-repeat

e EM for Factor Analysis

(t+1)
z:k

Above computation of could run into trouble when dimension of data > number of data.

The jj diagonal element of Z,((Hl) ~Y.[jth component of (x; — px)]?

When dimension of data (dimension of vector x;) > number of data, it is highly likely there will

be some jj diagonal element of Z,(f) is 0. Hence self-adjoint Z,(f) becomes singular.

One fix is that when dimension of data > number of data, we force
®._ ©
Y. =01
® (®)
where g, " = ave (X .
k ( k )].j
A better fix is Factor Analysis.

The cause of singularity is that on some dimension j all data points have same value. To fix that, we add
noise to data.

Formally, let (x,z) be data. x € R™,z € R¥, z latent variables. From preliminary: Conditional Gaussian &
Marginal Gaussian, we know if

) )
(Gl [ 52
then the condition probability is still Gaussian
P(x12) = N(pxjz = te + 2222 (2 = 1), Zxjz = Zx — 2220 B (CG-1)
In our case, we assume
z~N(u, = 0,Z,, =1)
Thus
P(x|z) = N(uy + Zy22, Ty — Zxz2zx)

This shows what kind of white noise to be added to x.
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€~N(0, Zyx — Zyz2zy)
x"Wi=x+X,z+€

Proof:

Var(x"®”) = [ — ERW) (" — Ex"W])"] = E[(Sy2 + €)(Exyz + €)'

=¥, Elzz]X,, + E[EGT] = Zxx

Cor(x™v,z) = E[(x™¥ — E[x""])(z — E[z])T] = E[(Z,,z + €)2zT] = %,, + E[ez"]

=3, +E[e]+E[z] + Cov(e,2) = Z,,

Hence nothing changes. QED

So that we can make new computation X, non-singluar. Then by inverse conditional Gaussian. Inverse

(CG-1), we have the solution in the form

P(z|x, y) Zyxs Zyz) = N (.uzlx = szz;ag (x — .ux)rzzlx = Zg - szz;agzxz)
1

Now use EM to find p,, 2,4, X,,. If necessary, use coordinate transformation

A=Zp, W =2y — Zyz20x

e General Proof of EM Convergence
x observed, z missing label (hidden/latent data), & model

logl_[P(xi|9) - z log P(x;16) =Zlogz P(x; 7z = k|6)
i i k

Above formula has “log of sum” is not useful. Luckily we have Jansen’s.
Let Q;(z) be some distribution over z.
f concave function
flax; + (1 —a)xy) = af (x1) + (1 — a)f (x2)

Here Y., Q(z|x;) = 1, and log is concave.

pP(x;,z = k|6
S10g% P(x,z = kIO) =  Tilog Qu(alr) L=
P(x;,z = k|O
> XiXkQi(z= klxi)logw
xP(z=k|x;,0)

(CG-1)

(EM-1)
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The Jensen’s inequality becomes equality when

P(x;,z = k|0)
Qi(z = klx;)

= constant independ of k — independ of z

That is
flax; + (1 —a)xy) = af (x) + (1 — a)f (x1)
So to maximize the lower bound (EM-1), we let
QO (z = klx) = PO (z = k|x;, 6©)
i.e. use the best guess (posterior) for the latent variable. Proof

P(x;,z =kl8) P(z|x,0)P(x,0)
Qi(z=klx)  P(z|x,6)

= P(x,0)

This is also known as turning Kullback—Leibler divergence into equality.
-E step

With some initial 8®, Q(©)

formulate expectation with distribution P(z = k|x;,0) < Q;(z = k|x;) log%m
-M step
Maximize above expectation wrt 8®), update Q(© = PO (z = k|x;, 1)
-repeat

Above algorithm will monotonically increase expectation after each iteration.

13.Dimension Reduction—Linear: PCA, ICA, CCA

These lower Dimensional Representations are invoking latent features. They are very different from

feature selection, which work by ignoring some features.

e Principal Component Analysis

Let X = (X1, X5, ..., X,) be n piece of training data, each X; is vector of D dimensional features. Hence

X is D X n matrix with one column per data point. To make later computation simple, we shift the entire

data to be centered at the origin
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X, =X; —ave(X)
X

Let V4, ..., V; be the principal components, vectors of D dimension, i.e. they are orthonormal to each
other. We want to represent

~

d
Xi= ) ayV = Z(Xi.Vle

a
=1 =1

(here is why we need to shift X to the origin, because V are the new axes) and make the reconstruction
error

——

D= R = e+ R 2%,
i i

[

as small as possible. Hence maximize

X X =Y X T X VWV = ZdX V)P = S VT XXTY, (PCA-1)
=

The goal is

max VIXXTV, subjectto V]V, =1
l

The interpretation of this is to find I/} such that projections on to it capture maximum variance in the data
Lagrange multiplier
max(V XXV, — AV 1)
Take derivative wrt V; and set it to O
XXT)V, = 4V,

Therefore, the problem is reduced to finding the eigenvector with largest eigenvalue (why largest? See
PCA-1).

What is XXT? It is the covariance matrix multiplied by n. By definition, the covariance matrix of a D X 1
dimensional random vector (i.e. multivariate) R is

Var[R] = E[(R — E[RD(R — E[R]D]

Agree perfectly to our centered X, thus XX7

(KX = ) (XDaXp
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After we find V = (V4 ..., V), what is the reconstruction error?
1 D
o2
;2”&' - X" = Z A
7 1=d+1

e Singular Value Decomposition
Any matrix X, X = VSUT, then

XXT =vS?2yT - XXTV = VS?

where V = (V,, ..., Vg4, ... ) matrix whose columns are orthonormal eigenvectors of XXT and S?%isa
diagonal matrix whose diagonal elements A; are the corresponding eigenvalues of XX7. Each column of
V is the principal axis, each column of (SUT) are the coordinates, because

Xi = V(SUT)ith column

e Independent Components Analysis
Recall in PCA we first find the direction that has the largest variance in the random vectors.

ICA4 PCA

Picture from Nathan Kutz http://courses.washington.edu/amath582/582.pdf page 359

- IC4

If the data has two independent variance directions, PCA won’t be good. Or if the second moment of
data is

XXT~1

white noise. ICA seeks 1, ..., V; that are most statistically independent to each other and they are non-
Gaussian, the sum of them minimizes

d
IX,Vy, o V) = Z HV,) — H(X)

More on ICA algorithm derived from maximization of non-Gaussianity, or maximum likelihood
estimation, see Aapo Hyvarinen
http://www.cs.helsinki.fi/u/ahyvarin/teaching/uml|2015/uml|2015 lecturenotes.pdf pages 49-64
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e Canonical Correlation Analysis
Find common low dimension basis for two datasets 4, B. PCA will be to minimize

Dok =&+ > v -l

XiEA Y,EB

CCA will be to maximize (already centered)

oxa Y

N o o
Cov(A4,B) = %zw

14.Non-Linear Dimensionality Reduction
Manifold Preserving

Laplacian Eigenmaps, ISOMAP, Local Linear Embedding,...

Tony Jebara http://www.cs.columbia.edu/~jebara/6772/notes/notes2.pdf

https://en.wikipedia.org/wiki/Nonlinear dimensionality reduction

Structured Models
15.Hidden Markov Models

Study sequential data: time series, speech recognition, gene sequence...
Joint Distribution P (X1, X5, ..., Xt) = P(X{)P(X5|X1)P(X31X2, X1) ... = [TE P(X;1XiZ1, ) X1)
Markov Assumption mth order: states depend on limited past history.

P(XilXi—q, s X1) = P(Xi|Xi—1, o) Piin)

E.g. Linear mth order autoregressive model AR (m)

P(Xi|Xi_1, ...,Xi_m)NN(LN(Xi_l, ...,Xi_m), O')

some linear function LN (X;_1, ..., Xi_m) = ¢; + Z}" a;X;_j, where a;’s are independent of i, which is

called homogeneous/stationary Markov model
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O observation states, S hidden states.

1°t order HMM, total probability

T T
P(Sy, 87301, 00) = | [ POISOPESH | [PSeISe-n)
t=1 t=2
The parameters 6 involved are the initial probability P(S; = s) = g, transition probability
P(S; = jIS¢—1 = i) = p;j, and emission probability P(0; = y|S; = i) = q’.

16.Three Main Questions for HMM

e Forward Algorithm
- EVALUTION: given HMM parameters, find how likely an observed sequence {0;} can appear.

P(04,...,07)

Use forward algorithm.

Brutal force says
P(Ol, ey OT) = Z{St}P(Sll ...,ST; 01, ey OT) (HMM‘BF)

Forward algorithm uses dynamic programming so that the computation is linear in number of
parameters. Initialize

a{‘ = P(0415, = k)P(S51 = k)

Forward stepping (filtering), iterate

@k = P(0y, ..., 0,,S, = k) = P(0,IS, = k)z ai_P(S, = k|S;_, = i)
i

Terminatet =T,

P(04,...,07) = z ak

k

- DECODING: given HMM parameters and an observed sequence, find the hidden states.

e Forward-Backward Algorithm
Find a particular hidden state P(S, = k|{0.}F_,), use Forward-Backward algorithm.

Initialize a¥ and
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Forward stepping (filtering), Iterate af and backward stepping (smoothing), iterate
ﬁg{ = P(Ot41, -, 07|Se = k) = Z P(Str1 = i|St = k)P(Op411Se41 = i)ﬁgﬂ
i

Terminate at t = t. Since P(S; = k; {0.}F_,) = afBE,

P(S; =k; {Ot}{=1) _ afﬁf
P{0T_)) Yialp

P(S: = k|{0t}?=1) =
Hence the most likely state at t
arg max akpk

e Viterbi Algorithm
Find the entire hidden states sequence {S;}, use Viterbi algorithm.

arg max P(S4,...,S7|04, ..., 07)

{St}t=1
Initialize
V1k = P(0,]S1 = k)P(S1 = k)
Iterate

Vtk ‘= max P(Sl, ""St—llst = k, 01, . OT)
{se3izt

= P(0.|S; = k) max P(S; = k|S_; = DV,
Terminateatt =T,
Sp = S7 = argmax vk
Trace back,
Si-1 = argmax P(S|Se—y = DVi4

e Baum-Welch Algorithm (EM)
- LEARNING: assume HMM and given an observed sequence, find the parameters for the HMM

arg max P(0y4, ...,07160)

Use Baum-Welch Algorithm (EM).

Initialize with random parameters
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E-step

. =PS='0T_,9 Z—C[tl-ﬂtE
yi(t) (Se l|{ t}t=1,6) Zjaiﬁtj

yi(t — Dpya; Bl
S(ij(t) =P(Se-1 =15 =j|{0t}’£=1J9) =— ,Bi ——
t-1

M-Step, maximize expectation }y;, ¥ &;;, solve

i1 60,=Yi(t) NS0
T = y(l)’ qk = ¢ , Dii ==
o ' Y1) D Wi S 7(5)

17.Kalman Filter (Linear Dynamical Systems)

“Filter” means forward stepping--current knowledge continuously shaping the understanding of future

observations.

Used in GPS navigation, computer vision devices. Same as HMM with continuously changing S.
Observations and States are multivariate Gaussians whose means are linear functions of their parent
states.

S1~N(0, Zinitiar)
St == ASt—l + ""N(O, R)
Q:; = BS; + ~N(0,R"

A transition matrix, B observation matrix. Use Conditional Gaussian and Marginal Gaussian equation
(CG-MG) from preliminary section,

IE[St|t—1] = A E[S;-4]
var[5t|t_1] =A- vaT[St_l] . AT + R

_ var[Sec-1] var([Sec-1] - BT
B -var[Syc-1] B -var[Sy.-1]-BT +R

Update
E[S:] = ]E[St|t—1] + 212357 (0, — E(0p))

var[S,] = var[Sﬂt—l] — 21235785,
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See Bishop 13.3.33

Roger Labbe, Kalman and Bayesian Filters in Python (Py notebook, PDF) and FilterPy

18.Graphical Models: Representation
Move from HMM (sequential dependence) to lose dependence.

The graph represents sets of conditional independence assumptions.

e Direct Graph: Bayesian Networks (BN)
Useful for designing models

BN is a directed acyclic graph that has no cyclic dependence, Directed Acyclic Graph (DAG) and it
satisfies Markov assumption, Conditional Probability Tables (CPT): X is are conditional independent to
its non-decedents given its immediate parents. Hence we separate grandparents from grandchildren.

p(-’E],.Tg, s T'T’G) =
pley)p(e)p(as)plag|ry, xa, x3)

plas|ey, xs)plegley)plaer|ey, xs)

http://www.cs.cmu.edu/~aarti/Class/10701/slides/Lecturel8.pdf page 11

Representation Theorem: the following two sets are equivalent

- Set of distributions that factorize according to the graph

- Set of distributions that respect conditional independencies implied by d-separation properties of
graph

Representation theorem says A is D-separated from B by C iff A L B|C. It links conditional
independence with graphical structure.

Let A, B, C disjoint sets of nodes. C can be empty. We say A, B are D-separated by C if every path
between A and B contains a node z such that (1) either z is a non-collider in C

Or (2) z is a collider and neither z nor its decedents in C
(D)
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Proof:

@\ — P(a, ble) = 622 = HOXEDPCID  p(qlc)P(b]c) (A)
P(a,b,c P(al|c)P(b|c)P(c
p P(a,b|c) = ( )= (ale)P(ble)P( )=P(a|c)P(b|c)—> 0

P(c) P(c)

&)

P(a,b) = 2 P(a,b,c) = P(a)P(b)Z P(cla,b) = P(@)P(b)

but it does not imply P(a|c) = P(al|b,c)

Markov Blanket

The set of nodes that relate to A. They are A 's parents, its children, and its children's other parents.

Picture from wiki http://en.wikipedia.org/wiki/Markov blanket

P(A) = Z P4, ... C)
(B.C,..G}
= Z P(G)P(B|G) P(A|B) P(F)P(C|F) P(C,AID)P(E|D)
{B,C,...G} P(G|B)P(B) P(F|C)P(C)

Since Yy P(E|D) = Y P(F|C) =Y P(G|B) = 1, we get

P(A) = 2 P(B)P(A|B)P(C)P(C,A|D)
{B,C,D}


http://en.wikipedia.org/wiki/Markov_blanket

QED.

Approximation Methods: Monte Carlo, Variational Method, Expectation Propagation

Similar to the proof above, say one wants to infer,

P(A,G,D)  Xia,.cya6p P4 ..., G)

P(A=alG=g,D=d) = =
9 PG, D) Zn.ciyieo PA -, G)

One’ll have to do the giant summation which has

2# elements in the Markov blankets of A,G,D excluding themselves

if all RV’s are binary.

Hence it is NP-hard. We have seen this in HMM brutal force (HMM-BF). Luckily there we have elegant
algorithms to make it linear in number of parameter. Here we can use Monte Carlo to make it linear.

¢ Indirect Graph: Markov Random Fields (MRF)
Applications in computer vision, statistical physics...

A complete graph is a simple (no loop to its own vertex, single edge) undirected graph in which every
pair of distinct vertices is connected by a unique edge. A clique is a subset of vertices of an undirected
graph such that its induced subgraph is complete.

Clique, x¢ = {x1,x5}

Maximal clique
X¢ = {X2.%3.%4}

Representation Theorem: Hammersley-Clifford Theorem

The undirected graph is factorized according to

HC l‘IJC()(C) — ¢(X1'X2'X3)¢’(X2:X3'X4)
Z Z

P(Xy,..Xy) =

C is the set of maximal cliques in the graph, Z is the normalization.
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Z= ZHIPC(XC)
X ¢

In the above formula, we see {X;, X,, X3}, {X,, X3, X, } are factors. Recall in directed graph, factors are
related to D-separation (conditional independent). For undirected graph, we say 4, B, C non-
intersecting set of nodes, that

ALB|C
if all paths between nodes in A & B are “blocked” by C. In example above
{X1} L {X,} | {X2, X3}
Lattice Theory

Graphical Models image denoising and its relation to Ising model (spin glasses, ferromagnetism) -
Christopher Bishop http://youtu.be/cOAWH5UFyOk?t=2064

e Factor Graphs
Useful for inference and learning. Factor graph provides explicit factorization. (un)directed graphs can
be written in factor graphs. Below is a undirected graph written in factor form.

f3(6y)

fiww)  fa(w,x)

fa(x,2)

From Chris Bishop http://mlss.tuebingen.mpg.de/2013/bishop_slides.pdf page 78

P(u.W;xJ’:Z) = fl(u,W)fz(W,X)fg(x,y)ﬁ;(x,z)

Then to compute

P(w) = 2 Plu,w,x,y,2)

ux,y,z

Hence brutal force says it is O(K*), K is the number of discrete values that u, w, x, v, z take on.

As before we can interchange summations, and this will allow us to use dynamic programming: inductive

step
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P(w) = Zfl(u W) " oW, 0f (e 9)fi(x2)

XY,z

mflﬁw(w) mf2—>w(w)

mg, (W) is called the message from f, tow, and it’s a function of w.

M) = ) Hw,x) Y i) Y fil,2)
X y Z

-~ N—— —_—
M) M)
mx—>f2 (x)

We summarize it for tree structure factor graph

Pe= ||  me®
f€{factors to x}

My (X) = Z f(x) 1_[ Myr (%)

xie{arguments of f expect x} xie{arguments of f expect x}

me@= || mpae
fi€{factors to x}/{fi}

The last two equations are recursive definitions. Each links two opposite direction messages. After all
messages being computed, computing marginal probability P(each node) becomes O (K).

19.Graphical Models: Inference

ask questions arose from the joint probability distribution. Above we showed variable eliminations for
tree graph.

e Moral Graphs & Junction Tree Algorithm

For complex directed graph or for increasing inference speed, we convert it to moral graph by marrying
nodes that share child.

Q@
@.@3‘@
® B @ W

Picture from https://en.wikipedia.org/wiki/Moral graph

Then to find marginal probability, we first replace nodes by factors
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PO = D 100 Xe, Xa (X X, Xa0) = ) > 1 (X7, X, Xin) 12X, X, Xe)
X5,X11,X8 X11 Xs Xg
f1(X11.X7) f2(Xs,X7)
f2(X7)

This way the problem becomes linear in # variables but becomes exponential in size of largest factor
generated, which is approximately equal to tree-width (max clique size-1) in moral graph.

20.Graphical Models: Learning
learn the parameters and structure of a graphical model

e Variables Elimination-Dynamic Programming
learning CPT from fully observed data and known graph structure.

Following http://www.cs.cmu.edu/~tom/10701 sp11/slides/GrMod3 2 17 2011-ann.pdf page 4

Same as Naive Bayes, compute all parameters,

_ Ztrain 6(Sk=1F=1,4,=0) )
HS:HF:LA:O B Ytrain 6 (Fx=1,Ax=0) (GML 1)

It is NP-hard, use dynamic programming.

e Partly Observed Data (EM)
Let X = observed variables, Z = unobserved variables. We would not be able to compute

0= argmeaxlogP(X,Z|9)
Instead we use EM
6 = arg max Ep(zix,0)[log P(X, Z|0)]
E-step: use X and current 8 to calculate P(Z|X, 0)
M-step: replace current 8 by
0:= arg max Ep(zix,0)[log P(X, Z|0)]
Suppose Sinus is unobserved.

Randomly pick initial parameters of the missing ones 0| 4, Oy |s, On|s ) then we can compute
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P(F,A,S,H,N)
Then compute, E-step

P(F,A,S = s,H,N)

P(S =s|F,A,H,N,0) = Y. P(F,A S, H,N)
s PR S

Then M-step

m

Epzix.0)[log P(X, Z]0)] = Z Z P(S = s|F, A, H,N,8) log P(F,A,S = s, H,N|6")

train s={0,1}
Compare this MLE with previous (GML-1), we get

0 =Ztrain5(Fk:LAk:O)P(S:llF;A:H;N;B)
S=HF=140 Dtrain 0(Fx = 1,4, = 0)

Repeat till converges.

e Learn Directed Tree Graph Structure (Chow-Liu Algorithm)
Tree: every node has only one immediate parent.

How to compare which tree is better? The one minimizes Kullback-Leibler divergence from T (X)), tree-
structured network, to P(X), total distribution,

X =k
KL(POITX)) = ZP(X k)logTEX ki

Proof: Let g be graph structure

argmaxlog P(X|6,¢)
9
We have

log P(X|0,¢) = Z z log P(X; = x|parents of X; = x")

X;e{nodes} x,x'e{possible values}

== Z Z P(x,x")1og P(X; = x|parents of X; = x")
use

expectation Xi€{nodes} x,xr€{possible values}

—H(Xi=x|parents of X;=xr)

Recall conditional entropy

HIYIX) = ) PH(YIX =) = = ) P() Y POIN) logPOIx) = = Y P(x,) log P(y1)
x x y Xy
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and mutual information
IX,Y)=HX)—-H{I|X)

Zp(x y)logP(y) + Z P(x,y)log P(y|x) = Z P(x,y) logp((x )

)P (y)

Thus arg m;x log P(X16, ¢) becomes

argmaxlog P(X|6,¢) = arg max 2 —H(X;|parents of X;)
¢ 7 X;€{nodes} I(X;parents of X;)—H(X;)

Since H(X;) is the entropy of all nodes independent of graphical structure, we arrived KL convergence.

QED

Chow-Liu Algorithm

- Compute mutual information for all nodes (as if it is a complete graph)
P(x;, %))
I(X;, X; P(x;,x;)log—————— ]

(t8) = ), Pl oy DP(x)

XX

- then use greedy algorithms (Kruskal’s, prim's, ...) to find the maximal spanning undirected tree
weighted by I(X;, X;)

- pick any node as the root, breath first search gives directions.

- to avoid overfitting use BIC to delete unnecessary edges.

Deep Learning and Reinforced Learning

Deep learning overview Yann LeCun, Yoshua Bengio & Geoffrey Hinton,
http://nature.com/nature/journal/v521/n7553/full/nature14539.html

Joan Bruna Estrach, Stat212b: Topics Course on Deep Learning, Berkeley
http://joanbruna.github.io/stat212b/
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21.Deep Belief Network

Hinton & Salakhutdinov, 2006 Science http://www.cs.toronto.edu/~hinton/science.pdf

Algorithm

- train W; until 2000-layer resemble good image.
- train W5 until 1000-layer resemble good 2000-layer data.
- train W3 until 500-layer resemble good 1000-layer data.

- train W, until 30-layer resemble good 500-layer data.

e Deep Boltzmann Machines (undirected)

Deep Belief Deep Boltzmann
Network Machine

Hinton & Salakhutdinov http://www.cs.toronto.edu/~fritz/absps/dbm.pdf
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e Regulation
- Use the logistic regulation ||W||?

- Dropout method

For each training section, randomly drop half of the hidden connections. In this way every random set of
half of the activated neutrons are able to produce correct outputs. So when the full neural network in
dealing with test data, it is prone to greater level of accuracy and less overfitage.

22.(Partially Observed) Markov Decision Process (POMDP/MDP)

Picture from http://www.cs.cmu.edu/~tom/10701 sp11/slides/MDPs RL 04 26 2011-ann.pdf page 4

If states S; are fully observed, O; = S;. That differentiates POMDP and MDP
We suppose there is a mapping from possible states to possible actions
mS—-A

i.e. for each s € S, what action it will take is deterministic. But what state it will end up is not
deterministic. It is given by

P(St41=5"ISe =5s,4r =a)
There is a rewards function R: S X A - R.
For now let’s assume MDPs.
Our goal is to maximize

E[R(sq, ag) + YR(s1,a1) + Y*R(sy,a;) + -]
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Discount constant y helps to make the series converges and it means to reach high rewards in the small
number of steps.

e Bellman Equations
Define value function

V™(s) = E[R(s,aq) + YR(s1,a1) + Y*R(sz,a3) + - |Sp = s, 7]
Then we have Bellman equations
V™(s) = R(s,n(s)) +y Z P(s'|s,n(s))V”(s')
s'es

which is a system of linear equations if |S| < oo, can be solved by matrix inversion, but what is the
optimal ?

e Value Iteration
Continue our goal to find best value

V*(s) = max V™ (s)
T
and optimal policy *

m*(s) = arg max Z P(s'|s,a)V*(s")
acA

s'es

]Esllsla[V*(S’)]
Above looks a lot like EM. So does the algorithm.
- Initialize V (s)

- loop through S, A, update

s'es
Q(s,a)

V(s) = max kr(s, a)+vy Z P(s'|s, a)V(s’))

- repeat til converges and we get IV*(s), and

V*(s) = max Q(s,a)
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e (Q-Learning-Model Free
If we don’t know P (S;41|St, A¢), we formally define Q-function

Q(s,a) =7(s,a) + YEg 5, (V*(s")
Thus
Q(s5,@) = 7(5,@) +VEqjq (max 0(s', @)

Q-learning for deterministic world

We have P(s'|s,a) = 6(s")
QS =s4r=a)=7r(S; =54, =a) + ¥ max Q(Sty1 =5, A1 = a)
- initial table Q(s, a) for each s,a
- loop over all actions available from state s, follow the action to state s’, then update Q(s, a).
- repeat

Q-learning for non-deterministic world

It is not as easy as it sounds to compute

#times we took action a in state s and got to s/

P(s'ls,a) = (QPP)

#times we took action a in state s

Instead we bind them together

Q(s,a) « 1 —ay)Q(s,a) + a, [r(s, a) + ¥ max (s, a’)]

1

TinGvisisa)’ Hence first time update Q(s,a), @y = 1/2, second time a, =

Where learning rate a,, =

1/3, and etc.
Since Q-learning converges slower than value iteration does, Dyna-Q algorithm

Richard Sutton https://webdocs.cs.ualberta.ca/~sutton/papers/sutton-90.pdf

- apply Q-learning to the real world

- use (QPP) to find the approximate world from the previous Q-learning experiences, apply value
iteration, update Q

e Example: Q-learning Stock Automatic Trading Machine
- initial random Q table
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- update Q table till converge

Q(s,a) « (1 —an)Q(s,a) + ay [r(s, a) +ymaxQ(s’, a’)]
s = relative price, relative volume, normalized deviation from mean, ... other indicators. Discretize them
a = buy, sell, do nothing

T =return.

Short term return result faster convergence than long term (cumulative) return. At the beginning makx. is
al

not strictly enforced.

e Temporal Difference Learning
Back to Q-learning for deterministic world

Of course the following Bellman equations are also true if we go 2-step ahead

V™(s) = R(s,m(s)) + YR(St41, T(Se41)) + ¥2 Z P(s'|s, m(s))V™(s")

s'es

Hence we change
QW(s,a) =r(s,a) +v max Q(St+1, At41)
to
Q@ (s,a) = r(s,a) + Y7 (Ses1, A1) + V2 max Q(St+2 Ats2)
and Q® etc.
We can blend all of these, using (1 —A)(1+A14+ A2 +-)=1,0<1<1,
update
Q*(s,a) = (1 —=D(QW(s,a) + 1P (s,a) + 212Q®(s,a) + )

=r(s,a) +y [(1 —A)maxQ(s,a’) + AQ*(st41, at+1)]

This turns out to converge faster than QI (s, a).
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Machine Learning in Action: Artificial Intelligence

23.Computer Can Read: Natural Language Processing

e Regular Expression
A starting of line, $ end of line, [LI][0O0][VV][Ee], A[*a] not start with ‘@’, *.” any character except \n
(\. for true .), | or, ( )? optional, * repeat (it's greedy), + at least one, {m,n} match >=m <n times, \n
match text, \\d digit, \\D not digit, \\s space, \\S not space, \\w word, \\W not word, \\t tab, \\n
new line, i+ at least one time, i* zero or more times, i? zere or 1 time, [:alnum:] alphanumeric,
[:alpha:] and [:digit:], [:blank:], [:cntrl:], [:graph:], [:lower:], [:upper:], [:print:], [:punct:], [:space:],
[:xdigit:]

library(stringer)
exContract <- "Monday ©8/01/16 Economist View"

str_extract(exContract, "[\\d][\\d][/T[\\d][\\d][/][\\d][\\d]")
#return "08/01/16"

e Twitter Stocks Sentiments
http://thinktostart.com/sentiment-analysis-on-twitter/

24.Computer Can Think: Neural Network

e Neural Net Package
https://www.r-bloggers.com/fitting-a-neural-network-in-r-neuralnet-package/

e Deep Generative Models
http://www.cs.princeton.edu/~blei/papers/HoffmanBleiWangPaisley2013.pdf

e Convolution Neural Network (CNN)
Divide image into region(pitch) to recognize items and apply statistics invariance

LeNet http://yann.lecun.com/exdb/lenet

e Recurrent Neural Network(RNN)
Remember the past

25.Computer Can Talk: Voice Recognition

e Speech API
Google http://cloud.google.com/speech/

68



http://thinktostart.com/sentiment-analysis-on-twitter/
https://www.r-bloggers.com/fitting-a-neural-network-in-r-neuralnet-package/
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Amazon Alexa http://developer.amazon.com/alexa-voice-service

Apple Siri http://developer.apple.com/sirikit

26.Computer Can See: Computer Vision

e Understand Picture API
Microsoft http://www.captionbot.ai

e Virtual Reality
Facebook Oculus http://oculus.com

Microsoft Hololens https://www.microsoft.com/microsoft-hololens

Google Cardboard http://vr.google.com/cardboard

Reference
27.Books

Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, An Introduction to Statistical

Learning with applications in R (with R code), Springer-Verlag, 2013

Trevor Hastie, Robert Tibshirani, Jerome Friedman, Elements of Statistical Learning: data mining,

inference and prediction 2nd ed , Springer-Verlag, 2009

Christopher Bishop, Pattern Recognition and Machine Learning (with Matlab code), Microsoft
2006
Kevin Murphy, Machine Learning, A Probabilistic Perspective (with Code), MIT 2012

Martin Wainwright, Michael Jordan, Graphical Models, Exponential Families, and Variational
Inference, Unpublished, Berkeley

Daniel Jurafsky, James Martin, Speech and Language Processing (draft 3™ ed), Prentice Hall; 2nd
edition 2008

Christopher Manning, Hinrich Schuetze, Foundations of Statistical Natural Language Processing
(free online), MIT press 1999

28.Packages

http://scikit-learn.org/stable/tutorial/machine learning map/index.html

Andreas Muller, NYU, Scikit-Learn Maintaining manager, Scikit Tutorial, Open Source

http://torch.ch/ CPU friendly Deep Learning, NYU
http://www.tensorflow.org Google deep learning

Udacity course https://www.udacity.com/course/deep-learning--ud730

http://deepmind.com Google deep reinforcement learning
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http://www-bcf.usc.edu/~gareth/ISL/
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http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://research.microsoft.com/en-us/um/people/cmbishop/prml/index.htm
https://github.com/PRML/PRMLT
https://github.com/probml/pmtk3
http://people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf
http://web.stanford.edu/~jurafsky/slp3/
http://cognet.mit.edu/book/foundations-of-statistical-natural-language-processing
http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
https://github.com/amueller/scipy_2015_sklearn_tutorial/tree/master/notebooks
https://github.com/scikit-learn/scikit-learn
http://torch.ch/
http://www.tensorflow.org/
https://www.udacity.com/course/deep-learning--ud730
http://deepmind.com/

http://www.cntk.ai Microsoft deep learning

http://www.mathworks.com/help/stats/index.html

http://cran.r-project.org/web/views/MachinelLearning.html

29.Courses

Aarti Singh, Tom Mitchell, Machine Learning 701 (with Note & Video), Carnegie Mellon
University
David Sontag, Introduction To Machine Learning, New York University

Mehryar Mohri, Foundations of Machine Learning, New York University

Mehryar Mohri, Advanced Machine Learning, New York University, Google Research

Terence Tao, Topics in Random Matrix Theory (with Note), UCLA
Yann LeCun, Deep Learning (with video, note), New York University, Facebook Al

John Langford, Yann LeCun, Big Data Learning (with video, note), New York University

Joan Bruna Estrach, Topics Course on Deep Learning, Berkeley

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Convolutional Neural Networks for Visual
Recognition, Stanford University

Fei-Fei Li (Stanford), Rob Fergus (NYU), Antonio Torralba (MIT), Recognizing and Learning Object
Categories (computer vision)

Eric Xing, Probabilistic Graphical Models (Note&Video), Carnegie Mellon University

30.0n-line Course

Tucker Balch, Machine Learning for Trading, Georgia Tech, Udacity

Andrew Ng, Machine Learning (with notes), Stanford, Coursera

Daphne Koller, Kevin Murphy, Probabilistic Graphical Models (with notes, video), Stanford,
Coursera

Dan Jurafsky, Christopher Manning, Natural Language Processing (with slide), Stanford,

Coursera
Michael Collins, Natural Lanquage Processing (with notes), Columbia University, Coursera

31.Data

https://www.google.com/publicdata/directory

https://aws.amazon.com/datasets/

https://www.data.gov/

http://factfinder.census.gov/

https://nycopendata.socrata.com/

http://www.sec.gov/edgar.shtml
http://bea.gov
https://www.irs.gov/uac/tax-stats
http://data.worldbank.org/
http://developer.trulia.com/
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http://www.cntk.ai/
http://www.mathworks.com/help/stats/index.html
http://cran.r-project.org/web/views/MachineLearning.html
http://www.cs.cmu.edu/~aarti/Class/10701/lecs.html
http://www.cs.cmu.edu/~tom/10701_sp11/lectures.shtml
http://cs.nyu.edu/~dsontag/courses/ml16
http://www.cs.nyu.edu/~mohri/ml15/
http://cs.nyu.edu/~mohri/aml16
http://math.ucla.edu/~tao/254a.1.10w
http://cilvr.cs.nyu.edu/doku.php?id=deeplearning2015:schedule
http://cilvr.cs.nyu.edu/doku.php?id=courses:bigdata:start
http://joanbruna.github.io/stat212b/
http://cs231n.github.io/
http://cs231n.github.io/
http://people.csail.mit.edu/torralba/shortCourseRLOC
http://people.csail.mit.edu/torralba/shortCourseRLOC
http://cs.cmu.edu/~epxing/Class/10708-14/lecture.html
https://www.udacity.com/course/machine-learning-for-trading--ud501
http://class.coursera.org/ml-003/lecture
http://cs229.stanford.edu/materials.html
http://coursera.org/learn/probabilistic-graphical-models
http://www.stanford.edu/class/cs228/
http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=ProbabilisticGraphicalModels
http://coursera.org/course/nlp
http://web.stanford.edu/~jurafsky/NLPCourseraSlides.html
http://coursera.org/course/nlangp
http://www.cs.columbia.edu/~cs4705/
https://www.google.com/publicdata/directory
https://aws.amazon.com/datasets/
https://www.data.gov/
http://factfinder.census.gov/
https://nycopendata.socrata.com/
http://www.sec.gov/edgar.shtml
http://bea.gov/
https://www.irs.gov/uac/tax-stats
http://data.worldbank.org/
http://developer.trulia.com/

https://developer.foursquare.com/

http://www.image-net.org/

32.Competition & Conference

International Conference on Machine Learning

http://deeplearning.net

https://www.kaggle.com

Machine Learning Summer Schools

NYU and Columbia Hackathon
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https://developer.foursquare.com/
http://www.image-net.org/
http://icml.cc/2016/
http://deeplearning.net/
https://www.kaggle.com/
http://mlss.cc/
http://hackny.org/hackathon/

